NGUYỄN ĐİNH TRİ (Chủ biên) TA VĂN ĐİNH - NGUYỂN HỒ QUY̌NH

$$
\begin{aligned}
& \text { Bài tập }
\end{aligned}
$$

NGUYÊN ĐÌNH TRÍ (chủ biên) TA VĂN ĐĨNH - NGUYỄN HỒ QUỲNH

BÀI TậP
 TOÁN CAO CẤP

TậP HAI

PHÉP TíNH GIẢl TíCH MộT BIẾN SỐ

(Tái bän lân thự tám)
2. 1 downloaded 60 .

LỜI NÓI ĐẦU

Quyển bài tập này trình bày lời giải của các bài tập dâ ra trong quyển TOÁN HỌC CAO CẤP tập hai, phép tinh giải tich một biến só́ của tác giả Nguyễn Đinh Trí, Tạ Văn Đīnh và Nguyễn Hó Quỳnh. Một số bài tập khác đã dược bố sung vào. ở cuốl sách có bở sung thêm một số bài tập hôn hợp có tính chất tởng hơp và nâng cao.

Nhu chüng ta dã biết, trong học toán, giũa việc hiểu sâu sắc lý thuyêt và làm thành thạo các bài tập có một môit quan hệ mật thiết. Chính trong quá trình học lŷ thuyết rối làm các bài tập, từ những bài tập vận dụng đơn giàn lý thuyết dến những bài tập ngày càng khó hơn, chúng ta dần dàn hiểu duợc các khái niệm toán học mới, nắm dược các phương pháp cơ bản, nhớ dược các kết quả co bản.

Đôi với các bạn sinh viên dùng quyển sách này, chúng tôi khuyên các bạn hãy tư minh giải các bài tập đã ra trong giáo trình và chỉ xem lời giải trong quyến sách này ẩ kiểm tra lại, tư minh dánh giá kết quả học tập của minh. Mong rằng quyển sách này giúp các bạn học tốt hơn và tìm dược nhưng lòi giải hay hon.

Quyển sách này viết lân đâu nên không tránh khơi các sai sớt. Chúng tôi mong nhận được ý kiến đóng góp của độc giả. Xin chân thành cám on.

CÁC tác GIẢ

Chuong 1 số THực

A. ĐỀ BÀI

1. Dùng kí hiệu tập hợp, biểu diển các tập sau :
1) Các số nguyên dương bé thua 12 .
2) Các số nguyên dương là bội số của 4 và bé thua 43
3) Các phán số có tử số là 3 và mẩu số là một số nguyên dương bé thua 9 .
2. Cho $F:=\{1,4,7,10\}$ và $G:=\{1,4,7\}$. Hỏi các mệnh dề sau đây, mệnh đề nào đúng :
1) $G \subset F$
2) Tập $\{1,7\}$ là tập con thực sự của F
3) Tập $\{1,4,7\}$ là tập con thực sự của G.
3. Liệt kê mọi tập con của các tập sau :
1) $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$; 2) $\{1,2,3,4\}$.
4. Cho $A:=\{a, b, c\} ; B:=\{1,2,3\} ; C:=\{b, c, a\} ; D=\{3,2,1\}$. Hỏi :
1) $\mathrm{A}=\mathrm{C}$?
2) $A=B$?
3) A tương dương B ?
4) $B=D$?
5. Xét xem các tập cho dưới đây, tập nào vô hạn, tập nào hữu hạn :
1) Tập mọi sớ nguyên dương lớn hơn 100
2) Tâp moị só nguyèn dương bé thuy 1 lo 00000003004 ICT 2012
3) Tập mọi điểm nằm trên đoạn thẳng nối liền hai điểm phân biệt A, B.
6. Cho $A:=\{q, r, t, u\} ; B:=\{p, q, s, u\}$ và $C:=\{t, u, v, w\}$.
1) Tìm $\mathrm{A} \cap(\mathrm{B} \cup \mathrm{C})$ và $(\mathrm{A} \cap \mathrm{B}) \cup(\mathrm{A} \cap \mathrm{C})$. Chúng có bằng nhau không?
2) Tìm $\mathrm{A} \cup(\mathrm{B} \cap \mathrm{C})$ và $(\mathrm{A} \cup \mathrm{B}) \cap(\mathrm{A} \cup \mathrm{C})$. Chúng có bằng nhau không ?
7. Cho A, B là hai tập hữu hạn, chứng minh rằng

$$
\operatorname{card}(A \cup B)=\operatorname{card}(A)+\operatorname{card}(B)-\operatorname{card}(A \cap B) .
$$

8. Cho $\mathrm{A}:=\{0,1,2\} ; \mathrm{B}:=\{1,3\}$.
1) Tìm $A \times B$ và $B \times A$
2) Tính card $(A \times B)$; $\operatorname{card}(B \times A)$; $\operatorname{card}(A \times A)$; card $(B \times B)$.
9. Xét ánh xạ $\mathrm{f}: \mathbf{R} \rightarrow \mathbf{R}: x \mapsto \frac{2 \mathrm{x}}{1+\mathrm{x}^{2}}$; f có là đơn ánh ? toàn ánh ? Tìm $f(\mathbf{R})$?
10. Dùng lập luận phản chứng, chứng minh rằng $\sqrt{3}$ là sớ vô tỉ.
11. Dùng phương pháp quy nạp toán học, chứng minh rằng

$$
\text { 1) } 1+2+\ldots+n=\frac{n(n+1)}{2}
$$

2) $1^{2}+2^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$.
12. Xét xem đã dùng tiên đề nào trong các tiên đề về số thực để chứng minh các hệ thức dưới đây :
1) $5+3=3+5$;
2) $9+0=9$;
3) $-3+0=-3$;
4) $(-3+4)+7=-3+(4+7)$;
5) $0+0=0$;
6) $(-1)(1)=-1$;
7) $(-3)+[-(-3)]=0$;
8) $4\left(\frac{1}{1}\right)=1$.
127.0.0.1 downloaded 60384.pdf at Tue Jul 31408:30:34 ICT 2012
13. Dùng định nghĩa "lớn hơn", "bé thua" và các tiên đề thứ tự, chứng $\operatorname{minh}(g i a ̉ ~ t h i e ̂ ́ t ~ a, b, c \in R): ~$
1) Nếu $a>b$ và $c>0$ thì $a c>b c$
2) Nếu $a>b$ thì $a+c>b+c$
3) Nếu $a>0$ thì $-a<0$
4) Nếu $a \neq 0$ thì $a^{2}>0$
5) Nếu $a>b$ thì $a^{2}>b^{2}$ (với $a>0, b>0$).
14. Giải các phương trình và bất phương trình :
1) $|x+3|=7$;
2) $|2 x-6|=14$;
3) $|x-4|<7$;
4) $|5 x-1| \leq 4$;
5) $|4 x-2|>4$;
6) $|5+9 x| \geq 4$.
15. Cho $\mathrm{A} \subset \mathbf{R} ; \mathrm{B} \subset \mathbf{R}$, định nghĩa :

$$
\begin{aligned}
A+B & :=\{x \in R \mid \exists a \in A, \exists b \in B, x=a+b\} \\
A B & :=\{x \in R \mid \exists a \in A, \exists b \in B, x=a b\}
\end{aligned}
$$

nghĩa là $A+B$ là tập các sớ thực có dạng $a+b$, với $a \in A$ và $b \in B ; A B$ là tập các số thực có dạng $a b$, với $a \in A$ và $b \in B$.

1) Giả sử A, B bị chặn trên, chứng minh rằng :

$$
\sup (A+B)=\sup A+\sup B
$$

2) Giả sử A, B bị chặn trên và $\mathrm{A} \subset \mathbf{R}^{+}, \mathrm{B} \subset \mathbf{R}^{+}$, chứng minh rằng :

$$
\sup (A B)=(\sup A)(\sup B)
$$

16. Xét sự hội tụ của dãy $x_{n}:=(-1)^{n} \frac{n+1}{n}$.
17. Chứng tỏ rằng các dãy sau đây hợi tụ và tìm giới hạn của chúng, $\mathrm{n} \geq 1$:
1) $\mathrm{x}_{\mathrm{n}}:=\frac{\mathrm{n}+1}{\mathrm{n}}$;
2) $x_{n}:=\frac{n}{n+1}$;
3) $x_{n}:=\frac{1}{2}$
4) $x_{n}:=\frac{n}{n}$.
127.0.0.1 downioadea 60384.pdf at Tue Jul $31^{3} \dot{x} \dot{8}: \overline{8}: \overline{3}: 84 \cdot$ ICT 2012
18. Tìm giới hạn của các dãy sau (nếu hội tụ) :
1) $x_{n}:=n-\sqrt{n^{2}-n}$;
2) $x_{n}:=\sqrt{n(n+a)}-n$;
3) $x_{n}:=n+\sqrt[3]{1-n^{3}}$;
4) $x_{n}:=\frac{n}{2} \sin \frac{n \pi}{2}$;
5) $x_{n}:=\frac{\sin ^{2} n-\cos ^{3} n}{n}$.
19. Xét dãy $x_{n}:=x_{n-1}+\frac{1}{x_{n-1}}$, với $x_{o}=1$.
1) Chứng minh rà̀ng x_{n} không có giới hạn hữu hạn.
2) Chứng minh rà̀ng $\lim _{n \rightarrow+\infty} x_{n}=+\infty$.
20. Xét dãy $\mathrm{x}_{\mathrm{n}}:=\frac{\mathrm{a}_{\mathrm{n}}}{\mathrm{b}_{\mathrm{n}}}$, với $\mathrm{a}_{\mathrm{n}}:=2 \mathrm{a}_{\mathrm{n}-1}+3 \mathrm{~b}_{\mathrm{n}-1}$

$$
b_{n}:=a_{n-1}+2 b_{n-1}, \text { với } a_{o}>0, b_{o}>0 .
$$

1) Chứng minh rằng $\mathrm{a}_{\mathrm{n}}>0 ; \mathrm{b}_{\mathrm{n}}>0$.
2) Tinh x_{n+1} theo x_{n}.
3) Tính $x_{n+1}-x_{n}$ và chứng tỏ rằng dãy x_{n} đơn điệu, suy ra $\left\{x_{n}\right\}$ có giới hạn độc lập với $\mathrm{a}_{\mathrm{o}}, \mathrm{b}_{\mathrm{o}}$.
21. Xét sự hội tụ và tìm giới hạn (nếu có) của dãy

$$
x_{n}:=\frac{2}{x_{n-1}}+1 \text { với } x_{o}=1 .
$$

22. Cho hai số a và b thoá $0<\mathrm{a}<\mathrm{b}$, xét hai dāy

$$
x_{n}:=\sqrt{x_{n-1} y_{n-1}} ; \quad y_{n}:=\frac{1}{2}\left(x_{n-1}+y_{n-1}\right)
$$

với $x_{o}=a$ và $y_{o}=b$.

23. Xét sự hội tụ cửa dãy :

$$
x_{n}:=\sqrt{1+x_{n-1}} \text {, với } x_{o}=\sqrt{3} .
$$

24. Đặt $x_{0}:=1$ và x_{n} thoả hệ thức

$$
\left(3+x_{n-1}\right) x_{n}+1=0 .
$$

Chứng tỏ rằng x_{n} hội tụ và tìm giới hạn của x_{n}.

B. LỜI GIẢI

1. 2) $\left\{\mathbf{n} \in \mathbf{N}^{*} \mid \mathrm{n}<12\right\}$
2) $\{n \in N \mid n=4 k ; k=1,2, \ldots, 10\}$
3) $\left\{\left.\frac{3}{n} \right\rvert\, n=1,2,3, \ldots, 8\right\}$.
2. 3) đúng ; 2) đúng ; 3) sai.
1. 2) $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\} ;\{\mathrm{a}, \mathrm{b}\} ;\{\mathrm{a}, \mathrm{c}\} ;\{\mathrm{b}, \mathrm{c}\} ;\{\mathrm{a}\} ;\{\mathrm{b}\} ;\{\mathrm{c}\} ; \phi$.
2) $\{1,2,3,4\} ;\{1,2,3\} ;\{1,2,4\} ;\{1,3,4\} ;\{2,3,4\} ;\{1,2\}$;
$\{1,3\} ;\{1,4\} ;\{2,3\} ;\{2,4\} ;\{3,4\} ;\{1\} ;\{2\} ;\{3\} ;\{4\} ; \phi$.
4. 5) đúng ; 2) sai ; 3) đúng ; 4) dúng.
1. 2) vô hạn ; 2) hữu hạn ; 3) vô hạn.
1. 2) $B \cup C=\{p, q, s, u, t, v, w\}$

$$
\begin{aligned}
& A \cap(B \cup C)=\{q, t, u\} ; A \cap B=\{q, u\} \\
& A \cap C=\{t, u\},(A \cap B) \cup(A \cap C)=\{q, t, u\} . V a ̣ y \\
& A \cap(B \cup C)=(A \cap B) \cup(A \cap C) .
\end{aligned}
$$

2) $B \cap C=\{u\} ; A \cup B=\{q, r, t, u, p, s\}$

$(A \cup B) \cap(A \cup C)=\{q, r, t, u\} . V$ ậ y
$\mathrm{A} \cup$
(B
$C)=(A \cup$
$\mathrm{B}) \cap(\mathrm{A} \cup$
C).
7. Gọi $\operatorname{card}(A)=m ; \operatorname{card}(B)=n ; \operatorname{card}(A \cap B)=p$. Khi đó, vì $A \cup B=(A \cap \bar{B}) \cup(B \cap \bar{A}) \cup(A \cap B)$ nên $:$
$\operatorname{card}(A \cup B)=\operatorname{card}(A \cap \bar{B})+\operatorname{card}(B \cap \bar{A})+\operatorname{card}(A \cap B)$ $=(m-p)+(n-p)+p=m+n-p$
nghia là card $(A \cup B)=\operatorname{card}(A)+\operatorname{card}(B)-\operatorname{card}(A \cap B)$.
8. 9) $A \times B=\{(0,1),(0,3),(1,1),(1,3),(2,1),(2,3)\}$

$$
B \times A=\{(1,0),(1,1),(1,2),(3,0),(3,1),(3,2)\}
$$

2) $\operatorname{card}(A \times B)=\operatorname{card}(B \times A)=6 ; \operatorname{card}(A \times A)=9$; $\operatorname{card}(B \times B)=4$.
9. f không đơn ánh vì với $0<|\mathrm{y}|<1$, phương trình $\frac{2 \mathrm{x}}{1+\mathrm{x}^{2}}=\mathrm{y}$ luôn có hai nghiệm, f cūng không toàn ánh vì với $|y|>1$ phương trình $\frac{2 x}{1+x^{2}}=y \Leftrightarrow y^{2}-2 x+y=0$ (ẩn là x) vô nghiệm. Ngoài ra, theo bất đẳng thức Cauchy :
$1+x^{2} \geq 2|x|$, đạt dấu $=$ khi $|x|=1$, do đó luôn có

$$
-1 \leq \frac{2 x}{1+x^{2}} \leq 1 ; \text { và } f(\mathbf{R})=[-1,1]
$$

10. Giả sử $\sqrt{3}$ là một só hữu tỉ, khi đó có thể viết $\sqrt{3}=\frac{\mathrm{m}}{\mathrm{n}} ; \mathrm{m}$, n là 2 số nguyện dương chỉ có ước số chung là 1 ; từ đó : $\mathrm{m}^{2}=3 \mathrm{n}^{2}$; do đó m^{2} chia hết cho 3 , do đó m chia hết cho 3 , và có thể viết $\mathrm{m}=3 \mathrm{k}$ với k nguyên dương; suy ra $\mathrm{m}^{2}=9 \mathrm{k}^{2}=3 \mathrm{n}^{2}$, nghia là $\mathrm{n}^{2}=3 \mathrm{k}^{2}, \mathrm{n}^{2}$

ước số chung là 3 ; và điều đó mâu thuẩn với giả thiết. Vậy $\sqrt{3}$ là một số vô tỉ.
11. 12) Hiển nhiên công thức đúng với $n=1$; bây giờ giả sử công thức đúng với $\mathrm{n}=\mathrm{k}$, sē chứng minh rằng công thức cũng đúng với $\mathrm{n}=\mathrm{k}+1$. Thật vậy, vì công thức đúng với $\mathrm{n}=\mathrm{k}$ nên có

$$
1+2+\ldots+k=\frac{k(k+1)}{2}
$$

suy ra

$$
\begin{aligned}
& 1+2+\ldots+k+k+1=\frac{k(k+1)}{2}+(k+1) \\
= & \left(\frac{k}{2}+1\right)(k+1)=\frac{(k+1)(k+2)}{2}
\end{aligned}
$$

2) Công thức hiển nhiên đúng với $n=1$; giả sử công thức đúng với $\mathrm{n}=\mathrm{k}$, nghĩa là giả sử có :

$$
1^{2}+2^{2}+\ldots+k^{2}=\frac{k(k+1)(2 k+1)}{6}
$$

Khi đó :

$$
\begin{aligned}
& 1^{2}+2^{2}+\ldots+k^{2}+(k+1)^{2}=\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2} \\
= & (k+1)\left(\frac{k(2 k+1)}{6}+(k+1)\right) \\
= & \frac{(k+1)\left(2 k^{2}+7 k+6\right)}{6} \\
= & \frac{(k+1)[2 k(k+2)+3(k+2)]}{6}=\frac{(k+1)(k+2)(2 k+3)}{6} .
\end{aligned}
$$

Hệ thức cuối cùng chứng tỏ rằng công thức cũng đúng với $\mathrm{n}=\mathrm{k}+1$.
12. 1) Giao hoán ; 2) Đồng nhất ; 3) Đồng nhất ; 4) Kết hợp ;

13. 1) $\mathrm{ac}-\mathrm{bc}=(\mathrm{a}-\mathrm{b}) \mathrm{c}$ (kết hợp)
$\mathrm{a}>\mathrm{b} \Rightarrow \mathrm{a}-\mathrm{b}>0,(\mathrm{a}-\mathrm{b}) \mathrm{c}>0$ (tiên đề 8).
2) Luôn có $\mathrm{a}-\mathrm{b}=\mathrm{a}+\mathrm{c}-\mathrm{c}-\mathrm{b}=(\mathrm{a}+\mathrm{c})-(\mathrm{b}+\mathrm{c})$

$$
a-b>0(\text { theo giả thiết }) \Rightarrow(a+c)-(b+c)>0
$$

$\Rightarrow \mathrm{a}+\mathrm{c}>\mathrm{b}+\mathrm{c}$.
3) Theo định nghĩa : $-\mathrm{a}<0 \Leftrightarrow 0-(-\mathrm{a})=\mathrm{a}>0$.

Từ giả thiết a >0, suy ra kết luận.
4) Nếu $a>0 \Rightarrow a^{2}>0$; nếu $a<0 \Rightarrow-a>0 \Rightarrow a^{2}>0$.
5) $\mathrm{a}^{2}>\mathrm{b}^{2} \Leftrightarrow \mathrm{a}^{2}-\mathrm{b}^{2}>0 \Leftrightarrow(\mathrm{a}-\mathrm{b})(\mathrm{a}+\mathrm{b})>0$, bất đẳng thức cuối cùng hiển nhiên đúng vì $a>b$ (giả thiết) và $a+b>0$.
14. 1) $|x+3|=7 \Leftrightarrow(x+3)^{2}=7^{2} \Leftrightarrow(x+3)^{2}-7^{2}=0$
$\Leftrightarrow(x+3-7)(x+3+7)=0 \Leftrightarrow(x-4)(x+10)=0 \Leftrightarrow x_{1}=4$; $x_{2}=-10$.
2) $|2 x-6|=14 \Leftrightarrow(2 x-6)^{2}=(14)^{2} \Leftrightarrow x_{1}=-4 ; x_{2}=10$.
3) $|x-4|<7 \Leftrightarrow(x-4)^{2}<7^{2} \Leftrightarrow(x-4)^{2}-7^{2}<0 \Leftrightarrow$ $(x-4-7)(x-4+7)<0 \Leftrightarrow(x-11)(x+3)<0 \Leftrightarrow-3<x<11$.
4) $|5 x-1| \leq 4 \Leftrightarrow(5 x-1)^{2} \leq 4^{2} \Leftrightarrow(5 x-1)^{2}-4^{2} \leq 0 \Leftrightarrow$ $-\frac{3}{5} \leq x \leq 1$.
5) $|4 x-2|>4 \Leftrightarrow(4 x-2)^{2}>4^{2} \Leftrightarrow x<-\frac{1}{2}$ hoặc $x>\frac{3}{2}$.
6) $|5+9 x| \geq 4 \Leftrightarrow(5+9 x)^{2} \geq 4^{2} \Leftrightarrow x \leq-1$ hoặc $x \geq-\frac{1}{9}$.
15. 1) Theo giả thiết, A, B bị chặn trên, do đó tồn tại supA và $\sup B$;
 12
do đó

$$
\sup (A+B) \leq \sup A+\sup B
$$

Mặt khắc, theo định nghĩa cận trên đúng, có :

$$
\begin{aligned}
& \sup A<A+\varepsilon_{1} \\
& \sup B<B+\varepsilon_{2}
\end{aligned}
$$

với $\varepsilon_{1}, \varepsilon_{2}$ là các số dương đủ bé, do đơ :

$$
\sup A+\sup B<A+B+\varepsilon, \text { với } \varepsilon=\varepsilon_{1}+\varepsilon_{2}
$$

do đó

$$
\begin{equation*}
\sup A+\sup B \leq \sup (A+B) \tag{2}
\end{equation*}
$$

So sánh (1) và (2) suy ra $\sup (A+B)=\sup A+\sup B$.
2) Cũng lập luận tương tự câu 1 ; (supA)(supB) là cận trên của tích $A B ;(A>0 ; B>0)$, dùng định nghīa cận trên đúng suy ra

$$
\sup (A B)=(\sup A)(\sup B) .
$$

16. $n+1>n \Rightarrow \frac{n+1}{n}>1 \Rightarrow\left|x_{n}\right|>1$. Mặt khác $x_{n}<0$ khi n lẻ và $x_{n}>0$ khi n chẳn, do đó không thế tồn tại $\lim _{n \rightarrow \infty} x_{n}$, dãy $\left\{x_{n}\right\}$ phàn kì.
17. 18) $x_{n}=\frac{n+1}{n}=1+\frac{1}{n}$; dãy $\left\{x_{n}\right\}$ giàm và bị số 1 chạ̃n dưới, do đó $\left\{x_{n}\right\}$ hội tụ.
2) $x_{n}=\frac{n}{n+1}=\frac{n+1-1}{n+1}=1-\frac{1}{n+1}$; dãy $\left\{x_{n}\right\}$ tảng và bị số 1 chặn trên nên $\left\{x_{n}\right\}$ hội tụ.
3) $x_{n}=\frac{1}{n^{2}+1},\left\{x_{n} \mid\right.$ giảm và $0<x_{n}<\frac{1}{2}$, do đó $\left\{x_{n}\right\}$ hội tụ.
4) $x_{n}=\frac{n}{n^{2}+1}=\frac{1}{n+\frac{1}{n}}$, mẩu số của x_{n} tãng vô hạn, do đó $\left\{x_{n}\right\}$ hội
tụ đến 0 .
127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
18. 19) $\dot{x}_{n}=\frac{n^{2}-n^{2}+n}{n+\sqrt{n^{2}-n}}=\frac{n}{n\left(1+\sqrt{1-\frac{1}{n}}\right)} \rightarrow \frac{1}{2}$
2) $x_{n}=\frac{n^{2}+a n-n^{2}}{\sqrt{n(n+a)}+n}=\frac{a n}{n\left(1+\sqrt{1+\frac{a}{n}}\right)} \rightarrow \frac{a}{2}$
3) $x_{n}=n+\sqrt[3]{1-n^{3}}=\frac{\left(n+\sqrt[3]{1-n^{3}}\right)\left(n^{2}-n \sqrt[3]{1-n^{3}}+\sqrt[3]{\left(1-n^{3}\right)^{2}}\right)}{n^{2}-n \sqrt[3]{1-n^{3}}+\sqrt[3]{\left(1-n^{3}\right)^{2}}}$

$$
=\frac{n^{3}+1-n^{3}}{n^{2}-n \sqrt[3]{1-n^{3}}+\sqrt[3]{\left(1-n^{3}\right)^{2}}} \rightarrow 0
$$

4) Khi $n \rightarrow \infty$ thì $\sin \frac{n \pi}{2}$ không xác định, do đó dãy $x_{n}=\frac{n}{2} \sin \frac{n \pi}{2}$ phân kì.
5) $x_{n}=\frac{\sin ^{2} n-\cos ^{3} n}{n} \leq \frac{2}{n} \Rightarrow \lim _{n \rightarrow \infty} x_{n}=0$.
19. 20) Từ định nghīa suy ra $\left\{x_{n}\right\}$ tăng; $x_{n}>1, \forall n$; giả sử $\lim _{n \rightarrow \infty} x_{n}=l$, $(l>1)$. Khi đó, theo định lí về giới hạn và thẹo biểu thức ta có :

$$
l=l+\frac{1}{l} \Rightarrow \frac{1}{l}=0 .
$$

Phương trình $\frac{1}{l}=0$ vô nghiẹ̃m, do đó x_{n} không thẻ̉ có giới hạn hữu hạn.
2) Vì $x_{n}>1$, và $\left\{x_{n}\right\}$ tăng nên

$$
\lim x_{n}=+\infty
$$

127.0.0.1 downloaded 60384.pdf $\stackrel{\text { at }}{\text { at }}$ キue Jul 31 08:30:34 ICT 2012
20. 1) Từ các biểu thức định nghĩa, có :

$$
a_{1}=2 a_{o}+3 b_{o}>0, b_{1}=a_{o}+2 b_{0}>0\left(v i ̀ a_{0}>0 ; b_{o}>0\right)
$$

suy ra $\mathrm{a}_{\mathrm{n}}>0, \mathrm{~b}_{\mathrm{n}}>0, \forall \mathrm{n}$.
2) Theo định nghĩa :

$$
x_{n+1}=\frac{a_{n+1}}{b_{n+1}}=\frac{2 a_{n}+3 b_{n}}{a_{n}+2 b_{n}}=\frac{2 x_{n}+3}{x_{n}+2}
$$

(chia tử và mẩu cho $\mathrm{b}_{\mathrm{n}}>0$) ; do đó $\mathrm{x}_{\mathrm{n}+1}=\frac{2 \mathrm{x}_{\mathrm{n}}+3}{\mathrm{x}_{\mathrm{n}}+2}$.
3) $x_{n+1}-x_{n}=\frac{2 x_{n}+3}{x_{n}+2}-x_{n}=\frac{\left(\sqrt{3}-x_{n}\right)\left(\sqrt{3}+x_{n}\right)}{x_{n}+2}$

Vì $x_{n}=\frac{a_{n}}{b_{n}}>0$ nên dấu của $x_{n+1}-x_{n}$ là dấu của $\sqrt{3}-x_{n}$, mặt khác, từ câu 2), có :

$$
\sqrt{3}-x_{n}=\sqrt{3}-\frac{2 x_{n-1}+3}{x_{n-1}+2}=\frac{\sqrt{3} x_{n-1}+2 \sqrt{3}-2 x_{n-1}-3}{x_{n-1}+2}
$$

Có thể viết tử số của phân sớ trèn thành

$$
\begin{aligned}
& \sqrt{3} x_{n-1}-x_{n-1}+\sqrt{3}-x_{n-1}+\sqrt{3}-3 \\
= & (\sqrt{3}-1) x_{n-1}+\sqrt{3}(1-\sqrt{3})+\sqrt{3}-x_{n-1} \\
= & (\sqrt{3}-1)\left(x_{n-1}-\sqrt{3}\right)+\sqrt{3}-x_{n-1} \\
= & \left(\sqrt{3}-x_{n-1}\right)(1+1-\sqrt{3})=\left(\sqrt{3}-x_{n-1}\right)(2-\sqrt{3}) .
\end{aligned}
$$

Do vậy, dấu của $\sqrt{3}-x_{n}$ là dấu của $\sqrt{3}-x_{n-1}$; tiếp tục suy diễn, có dấu của $\sqrt{3}-x_{n}$ là dấu của $\sqrt{3}-x_{0}$. Khi đó

- Nếu $\sqrt{3}-x_{0}>0 \Rightarrow\left\{x_{n}\right\}$ tãng và bị $\sqrt{3}$ chặn trên do đó $\left\{x_{n}\right\}$ hội tư, hơn nữa, từ hê thức
127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

$$
x_{n+1}-x_{n}-\frac{\left(\sqrt{3}-x_{n}\right)\left(\sqrt{3}+x_{n}\right)}{x_{n}+2}
$$

suy ra $\lim _{n \rightarrow \infty} x_{n}=\sqrt{3}$.

- Nếu $\sqrt{3}-x_{0}<0 \Rightarrow\left\{x_{n}\right\}$ giảm và $\left\{x_{n}\right\}$ bị $\sqrt{3}$ chặn dưới, cūng suy ra $\lim _{n \rightarrow \infty} x_{n}=\sqrt{3}$.
- Nếu $\sqrt{3}-x_{o}=0 \Rightarrow x_{n}=\sqrt{3}$.

Vậy trong mọi trường hợp có

$$
\lim _{n \rightarrow \infty} x_{n}=\sqrt{3}
$$

21. Trước hết để ý rằng nếu x_{n} có giới hạn là $/$ thì từ hệ thức định nghĩa suy ra:

$$
l=\frac{2}{l}+1
$$

Hơn nữa vì $x_{0}=1$ nên $x_{n}>1$, do đó suy ra l là nghiệm dương của phương trình bậc hai

$$
l^{2}-l-2=0
$$

Nghĩa là $l=2$.
Bậy giờ ta sē chứng minh rà̀ng dãy $\left\{x_{n}\right\}$ hội tụ.
Thật vậy, ta biểu diễn x_{n+1} theo x_{n-1} :

$$
\begin{gathered}
x_{n+1}=\frac{2}{x_{n}}+1=\frac{2}{1+\frac{2}{x_{n-1}}}+1=\frac{2 x_{n-1}}{x_{n-1}+2}+1 \\
x_{n+1}-2=\frac{x_{n-1}-2}{x_{n-1}+2} \text { và } x_{n+1}-x_{n-1}=\frac{-x_{n-1}^{2}+x_{n-1}+2}{x_{n-1}+2}
\end{gathered}
$$

Hơn nữa, dấu của $x_{n+1}-x_{n-1}$ là dấu của tam thức bậc hai $-x_{n-1}^{2}+x_{n-1}+2$. Suy ra nếu $x_{n-1}>2$ thì $x_{n+1}<x_{n-1}$ và nếu $x_{n-1}<2$ thì $x_{n+1}>x_{n-1}$. Như thế dãy con $\left\{x_{2 p}\right\}$ tãng (theo p) và bị sóf 2 chặn trên vì $x_{2}<2$ và dãy con $\left\{x_{2 p+1}\right\}$ giảm và bị chặn dưới bởi số 2 vì $x_{1}=3$. Cả hai dãy xen kẽ nhau và có chung giới hạn là $\lim _{n \rightarrow \infty} x_{n}=2$.
22. Sẽ chứng minh rầng $\left\{x_{n}\right\}$ tăng và $\left\{y_{n}\right\}$ giảm :

$$
\begin{gathered}
\frac{x_{1}}{a}=\frac{b}{x_{1}}=\sqrt{\frac{b}{a}}>1 \\
y_{1}-a=b-y_{1}=\frac{b-a}{2}>0(\text { vì } 0<a<b)
\end{gathered}
$$

Suy ra $x_{0}<x_{1}<y_{1}<y_{o}$.
Tổng quát hoá

$$
\begin{gathered}
y_{n-1}-x_{n-1}=\frac{\left(\sqrt{y_{n-2}}-\sqrt{x_{n-2}}\right)^{2}}{2}>0 \\
y_{n-1}=\frac{1}{2}\left(x_{n-2}+y_{n-2}\right) ; x_{n-1}=\sqrt{x_{n-2} y_{n-2}} \\
y_{n}=\frac{x_{n-1}+y_{n-1}}{2}<2 \cdot \frac{y_{n-1}}{2}
\end{gathered}
$$

vì
nghĩa là $y_{n}<y_{n-1}, x_{n}=\sqrt{x_{n-1} y_{n-1}}>\sqrt{x_{n-1}^{2}}$, nghĩa là $x_{n}>x_{n-1}$.
Cuối cùng

$$
y_{n}-x_{n}=\left(\sqrt{\frac{y_{n-1}}{2}}-\sqrt{\frac{x_{n-1}}{2}}\right)^{2}>0
$$

Vậy :

$$
a<x_{1}<x_{2}<\ldots<x_{n}<y_{n}<y_{n-1}<\ldots<y_{1}<b
$$

Dãy $\left\{x_{n}\right\}$ tăng và bị chặn trên bởi mọi y_{n}, do đó có egiới hạn, $\left\{y_{n}\right\}$ giảm và bị mọi x_{n} chặn dưới, cũng có giới hạn, ngoài ra, gọi L, / lần lượt là các giới hạn, ta có

$$
\mathrm{L}=\sqrt{\mathrm{L} l} \text { và } l=\frac{\mathrm{L}+l}{2} \Rightarrow \mathrm{~L}=l
$$

23. Ta sẽ chứng minh rằng $\left\{x_{n}\right\}$ giảm và bị chặn dưới :

$$
\begin{aligned}
& x_{1}=\sqrt{1+\sqrt{3}}<x_{0}, \text { vì } x_{0}=\sqrt{3} \\
& x_{2}=\sqrt{1+x_{1}}<\sqrt{1+x_{0}}, \text { tức là } x_{2}<x_{1} .
\end{aligned}
$$

Giả sử $x_{n}<x_{n-1}$, khi đó

$$
x_{n+1}=\sqrt{1+x_{n}}<\sqrt{1+x_{n-1}} \text {, vì } x_{n}<x_{n-1} \text { tức là } x_{n+1}<x_{n} \text {. }
$$

Mặt khác $x_{o}>1, x_{1}>1$, giả sử $x_{n}>1$, khi đó

$$
\mathrm{x}_{\mathrm{n}+1}=\sqrt{1+\mathrm{x}_{\mathrm{n}}}>\sqrt{2} \Rightarrow \mathrm{x}_{\mathrm{n}}>1, \quad \forall \mathrm{n}
$$

Vạy x_{n} có giới hạn là l thơả $l=\sqrt{1+l}$, tức là l là nghiệm lớn hơn l của phương trình

$$
l^{2}-l-1=0 ; \quad l=\frac{1 \pm \sqrt{5}}{2}
$$

Do đó $l=\frac{1+\sqrt{5}}{2}$.
24. Bằng quy nạp, có thể chứng minh rằng $\mathrm{x}_{\mathrm{n}}<0, \mathrm{n}>1$, từ đó, x_{n} giảm theo n tăng, $\left|x_{n}\right| \leq 1$, do vậy $x_{n}>-\frac{1}{2}$, từ đó suy ra $\left\{x_{n}\right\}$ họi tụ, và nếu gọi $t=\lim _{n \rightarrow \infty} x_{n}$ thì l là nghiệm lớn hơn $-\frac{1}{2}$ của phương trình

$$
\begin{gathered}
x^{2}+3 x+1=0 . \\
\text { Vay } \quad \lim _{\mathrm{n} \rightarrow \infty} \mathrm{x}_{\mathrm{n}}=l=\frac{-3+\sqrt{5}}{2} .
\end{gathered}
$$

Chutong 2

HÀM SỐ MộT BIẾN SỐ THỰC

A. $\mathbf{\text { Eê Bàn }}$

1. Tìm miền xác định của các hàm só :
1) $y=(x-2) \sqrt{\frac{1+x}{1-x}}$;
2) $y=\sqrt{\sin \sqrt{x}}$;
3) $y=\sqrt{\cos x^{2}}$;
4) $y=\lg \left(\sin \frac{\pi}{x}\right)$;
5) $y=\frac{\sqrt{x}}{\sin \pi x}$;
6) $y=\arcsin \frac{2 x}{1+x}$;
7) $y=\arccos (2 \sin x)$;
8) $y=\lg [\cos (\lg x)]$;
9) $y=\sqrt[4]{\lg (\operatorname{tg} x)}$.
2. Tìm miền giá trị của các hàm số :
1) $y=\sqrt{2+x-x^{2}}$;
2) $y=\lg (1-2 \cos x)$;
3) $y=\arccos \frac{2 x}{1+x^{2}}$;
4) $y=\arcsin \left(\lg \frac{x}{10}\right)$.
3. Cho $f(x):=\lg x^{2}, \operatorname{tim} f(-1), f(-0,001), f(100)$.
4. Cho

$$
f(x):= \begin{cases}1+x & \text { khi }-\infty<x \leq 0 \\ 2^{x} & \text { khi } x>0\end{cases}
$$

$\operatorname{Tim} f(-2), f(-1), f(0), f(1), f(2)$.
127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
5. Cho $f(x):=\frac{1-x}{1+x}$, tim $f(0), f(-x), f(x+1), f(x)+1, f\left(\frac{1}{x}\right)$ và $\frac{1}{f(x)}$.
6. Tìm hàm số $\mathrm{f}(\mathrm{x})$ có dạng $\mathrm{f}(\mathrm{x})=\mathrm{ax}+\mathrm{b}$, biết rằng $\mathrm{f}(0)=-2$ và $\mathrm{f}(3)=5$ (nội suy tuyến tính).
7. Tìm hàm số $\mathrm{f}(\mathrm{x})=\mathrm{ax}+\mathrm{bx}+\mathrm{c}$, biết rằng $\mathrm{f}(-2)=0, \mathrm{f}(0)=1$, $f(1)=5$ (nội suy bậc hai).
8. Hàm só́ $y=\operatorname{sgn} x$ (đọc là dấu của x) được định nghĩa như sau :

$$
\operatorname{sgn} x:=\left\{\begin{array}{ccc}
-1 & \text { nếúu } & x<0 \\
0 & \text { nếu } & x=0 \\
1 & \text { nếu } & x>0
\end{array}\right.
$$

Vẽ đồ thị của hàm số đó và chứng minh rằng :

$$
|x|=x \operatorname{sgn} x .
$$

9. Giả sử hàm số $f(\mathrm{u})$ xác định khi $0<u<1$; tìm miền xác định của $\mathrm{f}(\sin \mathrm{x}), \mathrm{f}(\ln \mathrm{x})$.
10. Cho $\mathrm{f}(\mathrm{x}):=\frac{1}{2}\left(\mathrm{a}^{\mathrm{x}}+\mathrm{a}^{-\mathrm{x}}\right), \mathrm{a}>0$; chứng minh rằng :

$$
f(x+y)+f(x-y)=2 f(x) \cdot f(y)
$$

11. Giả $\operatorname{ử} f(x)+f(y)=f(z)$. Hãy xác định z nếu :
1) $f(x)=a x$;
2) $f(x)=\operatorname{arctg} x,(|x|<1)$
3) $f(x)=\frac{1}{x}$;
4) $f(x)=\lg \frac{1+x}{1-x}$.
12. $\operatorname{Tim} f(f(x)), g(g(x)), f(g(x)), g(f(x))$ nếu :
1) $f(x)=x^{2} ; g(x)=2^{x}$;
2) $f(x)=\operatorname{sgn} x ; g(x)=\frac{1}{x}$;
3) $f(x)=\left\{\begin{array}{ll}0 & \text { khi } x \leq 0 \\ x & \text { khi } x>0\end{array}\right.$; $g(x)=\left\{\begin{array}{cc}0 & \text { khi } x \leq 0 \\ -x^{2} & \text { khi } x>0\end{array}\right.$
127.0.0.1 1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
13. Tìm $f(x)$, nếu :
1) $f(x+1)=x^{2}-3 x+2$
2) $f\left(x+\frac{1}{x}\right)=x^{2}+\frac{1}{x^{2}} \quad(|x| \geq 2)$
3) $f\left(\frac{1}{x}\right)=x+\sqrt{1+x^{2}} \quad(x>0)$
4) $f\left(\frac{x}{x+1}\right)=x^{2}$.
14. Tìm hàm số ngược của các hàm số :
1) $y=2 x+3$
2) $y=x^{2}$: (a) $-\infty<x \leq 0$;
(b) $0 \leq x<+\infty$
3) $y=\frac{1-x}{1+x}(x \neq-1)$
4) $y=\sqrt{1-x^{2}}$: (a) $-1 \leq x \leq 0$; (b) $0 \leq x \leq 1$
5) $y=\operatorname{sh} x$, với $\operatorname{sh} x:=\frac{1}{2}\left(e^{x}-e^{-x}\right),-\infty<x<+\infty$.
15. Hàm số $\mathrm{f}(\mathrm{x})$ xác định trong một khoảng đối xứng ($-l, l$) được gọi là chẵn nếu $\mathrm{f}(\mathrm{x})=\mathrm{f}(-\mathrm{x})$, lé nếu $\mathrm{f}(\mathrm{x})=-\mathrm{f}(-\mathrm{x})$. Xét tính chān lẻ các hàm số :
1) $f(x):=3 x-x^{3}$
2) $f(x):=\sqrt[3]{(1-x)^{2}}+\sqrt[3]{(1+x)^{2}}$
3) $f(x):=a^{x}+a^{-x}(a>0)$
4) $f(x):=\ln \frac{1-x}{1+x}$
5) $f(x):=\ln \left(x+\sqrt{1+x^{2}}\right)$.
16. Chứng minh rà̀ng bất kì một hàm số nào xác định trong một khoảng đối xứng ($-l, l$) cũng có thể viết được dưới dạng tổng một hàm số chẩn và một hàm số lẻ.
17. Xét tính tuần hoàn và tìm chu kì các hàm số :
1) $f(x):=A \cos \lambda x+B \sin \lambda x$
2) $f(x):=\sin x+\frac{1}{2} \sin 2 x+\frac{1}{3} \sin 3 x$
3) $f(x):=2 \operatorname{tg} \frac{x}{2}-3 \operatorname{tg} \frac{x}{3}$
4) $f(x):=\sin ^{2} x$
5) $f(x):=\sin x^{2}$
6) $f(x):=\sqrt{\operatorname{tg} x}$
7) $f(x):=\sin x+\sin (x \sqrt{2})$.
18. Viết các hàm số sau đây dưới dạng hàm số hợp :
1) $y=\left(3 x^{2}-7 x+1\right)^{3}$;
2) $y=2^{\operatorname{tg}\left(\frac{1}{x}\right)}$
3) $y=\ln \left(\operatorname{tg} \frac{x}{2}\right)$;
4) $y=\sqrt{x+\sqrt{x}}$
5) $y=\arcsin \sqrt{\frac{x}{1+x}}$.
19. Dùng phương pháp vẽ từng điểm, vē đồ thị các hàm sơ :
1) $y=\sin \left(x+\frac{\pi}{4}\right) ; \quad$ 2) $y=\cos 3 x$;
2) $y=\cos \frac{x}{3}$;
3) $y=3^{x}$;
4) $y=\log _{2} \frac{1}{x}$.

B. LỜI GIẢI

1. 2) Miền xác định là tập $\left\{x \left\lvert\, \frac{1+x}{1-x} \geq 0\right.\right\}$, nghĩa là

$$
(1+x)(1-x) \geq 0(x \neq 1) \Leftrightarrow-1 \leq x<1 .
$$

127.0.0.1 dewnloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
2) Miền xác định là tập $\{x \mid x \geq 0 ; \sin \sqrt{x} \geq 0\}$; nghĩa là :

$$
\begin{aligned}
& 2 \mathrm{k} \pi \leq \sqrt{\mathrm{x}} \leq(2 \mathrm{k}+1) \pi ; \mathrm{k}=0,1,2, \ldots \\
\Leftrightarrow & 4 \mathrm{k}^{2} \pi^{2} \leq \mathrm{x} \leq(2 \mathrm{k}+1)^{2} \pi^{2} ; \mathrm{k}=0,1,2, \ldots
\end{aligned}
$$

3) $\cos x^{2} \geq 0 \Leftrightarrow x^{2} \leq \frac{\pi}{2}$, hoạc $-\frac{\pi}{2}+2 k \pi \leq x^{2} \leq \frac{\pi}{2}+2 k \pi \Leftrightarrow|x| \leq \sqrt{\frac{\pi}{2}}$
hoặc $\sqrt{\frac{\pi}{2}(4 k-1)} \leq|x| \leq \sqrt{\frac{\pi}{2}(4 k+1)}, k=1,2, \ldots$
4) $\sin \frac{\pi}{x}>0 \Leftrightarrow 2 k \pi<\frac{\pi}{x}<(2 k+1) \pi$ hoạc

$$
-(2 k+2) \pi<\frac{\pi}{x}<-(2 k+1) \pi \Leftrightarrow \frac{1}{2 k+1}<x<\frac{1}{2 k}
$$

hoặ $c-\frac{1}{2 k+1}<x<-\frac{1}{2 k+2}, k=0,1,2, \ldots$
5) $\sin \pi x \neq 0, x \geq 0 \Leftrightarrow x>0, x \neq n, n=1,2, \ldots$
6) $-1 \leq \frac{2 x}{1+\dot{x}} \leq 1 \Leftrightarrow\left\{\begin{array}{l}\frac{2 x}{1+x}+1 \geq 0 \\ \frac{2 x}{1+x}-1 \leq 0\end{array}\right.$
$\Leftrightarrow\left\{\begin{array}{l}x<-1 \text { hoặ } x \geq-\frac{1}{3} \\ -1<x \leq 1\end{array}\right.$

$$
\Leftrightarrow-\frac{1}{3} \leq x \leq 1
$$

7) $-1 \leq 2 \sin x \leq 1 \Leftrightarrow-\frac{1}{2} \leq \sin x \leq \frac{1}{2} \Leftrightarrow$

$$
-\frac{\pi}{6}+k \pi \leq x \leq \frac{\pi}{6}+k \pi, k \in \mathbf{Z}
$$

8) $\cos \lg x>0 \Leftrightarrow-\frac{\pi}{2}+2 k \pi<\lg x<\frac{\pi}{2}+2 k \pi$

$$
\Leftrightarrow 10^{\left(2 \mathrm{k}-\frac{1}{2}\right) \pi}<x<10^{\left(2 \mathrm{k}+\frac{1}{2}\right) \pi}, k \in Z .
$$

9) $\lg (\operatorname{tg} x) \geq 0 \Leftrightarrow \operatorname{tg} x \geq 1 \Leftrightarrow \frac{\pi}{4}+k \pi \leq x<\frac{\pi}{2}+k \pi, k \in \mathbf{Z}$.
2. 3) $2+x-x^{2} \geq 0,2+x-x^{2}$ đạt cực đại khi $x=\frac{1}{2}$; do đó $0 \leq y \leq \frac{9}{4}$.
2) $1-2 \cos x>0, \cos x \geq-1 \Leftrightarrow 0<1-2 \cos x \leq 3 \Rightarrow-\infty<y \leq \lg 3$.
3) $-1 \leq \frac{2 x}{1+x^{2}} \leq 1 \Rightarrow 0 \leq y \leq \pi$.
4) $-1 \leq \lg \frac{x}{10} \leq 1 \Rightarrow-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$.
3. $\mathrm{f}(\mathrm{x}):=\lg \mathrm{x}^{2} ; \mathrm{f}(-1)=\lg (-1)^{2}=\lg 1=0$

$$
\begin{aligned}
& f(-0,001)=\lg (-0,001)^{2}=\lg (0,000001)=\lg 10^{-6}=-6 \\
& f(100)=\lg (100)^{2}=\lg 10^{4}=4 .
\end{aligned}
$$

4. $f(-2)=1-2=-1 ; f(-1)=1-1=0 ; f(0)=1+0=1$;

$$
f(1)=2^{1}=2 ; f(2)=2^{2}=4
$$

5. $\mathrm{f}(0)=\frac{1-0}{1+0}=1 ; \mathrm{f}(-\mathrm{x})=\frac{1-(-\mathrm{x})}{1+(-\mathrm{x})}=\frac{1+\mathrm{x}}{1-\mathrm{x}}$
$f(x+1)=\frac{1-(x+1)}{1+(x+1)}=-\frac{x}{x+2}$
$\mathrm{f}(\mathrm{x})+1=\frac{1-\mathrm{x}}{1+\mathrm{x}}+1=\frac{1-\mathrm{x}+1+\mathrm{x}}{1+\mathrm{x}}=\frac{2}{1+\mathrm{x}}$
$f\left(\frac{1}{x}\right)=\frac{1-\frac{1}{x}}{1+\frac{1}{x}}=\frac{x-1}{x+1}$
127.0.0.1 downloaded 60̂̉384.pdf at Tue Jul 31 08:30:34 ICT 2012

$$
\frac{1}{f(x)}=\frac{1}{\frac{1-x}{1+x}}=\frac{1+x}{1-x}
$$

6. $f(x)=a x+b, f(0)=-2 \Rightarrow-2=a \cdot 0+b, b=-2$.

$$
f(3)=5=a \cdot 3+b=3 a-2 \Rightarrow 3 a=7 ; a=\frac{7}{3} .
$$

Vạy $f(x)=\frac{7}{3} x-2$.
7. $f(x)=a x^{2}+b x+c$

$$
f(0)=1=a .0+b \cdot 0+c \Rightarrow c=1
$$

$$
f(-2)=0=a(-2)^{2}+b(-2)+c \Rightarrow 4 a-2 b+1=0
$$

$$
f(1)=5=a(1)^{2}+b(1)+c \Rightarrow a+b=4 .
$$

Từ hệ hai phương trình

$$
\left\{\begin{array}{l}
4 a-2 b=-1 \\
a+b=4
\end{array} \Rightarrow a=\frac{7}{6} ; b=\frac{17}{6} .\right.
$$

Vậ $f(x)=\frac{7}{6} x^{2}+\frac{17}{6} x+1$.
8. $|x|=\left\{\begin{array}{l}x, x \geq 0 \\ -x, x<0\end{array}\right.$
$x>0:|x|=x=x \operatorname{sgn} x$
$x<0:|x|=-x=x \operatorname{sgn} x$
Vậy $|x|=x \operatorname{sgn} x$.

Hinh 1
9. Theo giả thiết $\mathrm{f}(\mathrm{u})$ xác định với $0<\mathrm{u}<1$, do đó $\mathrm{f}(\sin \mathrm{x})$ xác định với $0<\sin x<1 \Leftrightarrow 2 k \pi<x<(2 k+1) \pi ; k \in \mathbf{Z}$.
$f(\ln x)$ xác định với $0<\ln x<1 \Leftrightarrow 1<x<e$.
10. Theo định nghĩa $f(x)$:

$$
\begin{aligned}
& f(x+y)=\frac{1}{2}\left(\mathrm{a}^{x+y}+\mathrm{a}^{-(x+y)}\right) \\
& f(x-y)=\frac{1}{2}\left(\mathrm{a}^{x-y}+\mathrm{a}^{-(x-y)}\right)
\end{aligned}
$$

Suy ra :

$$
\begin{aligned}
f(x+y)+f(x-y) & =\frac{1}{2} a^{x}\left(a^{y}+a^{-y}\right)+\frac{1}{2} a^{-x}\left(a^{y}+a^{-y}\right) \\
& =\frac{1}{2}\left(a^{y}+a^{-y}\right)\left(a^{x}+a^{-x}\right)=2 f(x) f(y) .
\end{aligned}
$$

11. 12) $f(x)=a x ; f(y)=a y ; f(z)=a z$.

$$
f(x)+f(y)=f(z) \Rightarrow a x+a y=a z \Rightarrow z=x+y
$$

2) Đặt $\operatorname{arctg} x=u ; \operatorname{arctg} y=v \Rightarrow \frac{x+y}{1-x y}=\operatorname{tg}(u+v) \Rightarrow$

$$
u+v=\operatorname{arctg} \frac{x+y}{1-x y}=\operatorname{arctg} x+\operatorname{arctg} y=\operatorname{arctg} z(v i ̀ f(x)=\operatorname{arctg} x \text { và }
$$

$$
\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})=\mathrm{f}(\mathrm{z})) ; \text { do đó }
$$

$$
z=\frac{x+y}{1-x y} ;|x|<1
$$

$$
\text { 3) } f(x)=\frac{1}{x} ; f(y)=\frac{1}{y} ; f(z)=\frac{1}{z}
$$

$$
f(x)+f(y)=f(z) \Rightarrow \frac{1}{x}+\frac{1}{y}=\frac{1}{z} \Rightarrow z=\frac{x y}{x+y}
$$

$$
\text { 4) } f(x)=\lg \frac{1+x}{1-x} ; f(y)=\lg \frac{1+y}{1-y} ; f(z)=\lg \frac{1+z}{1-z} ; f(x)+f(y)=f(z)
$$

$$
\Rightarrow \lg \frac{1+x}{1-x}+\lg \frac{1+y}{1-y}=\lg \frac{1+z}{1-z}
$$

$$
\Rightarrow \lg \frac{(1+x)(1+y)}{(1-x)(1-y)}=\lg \frac{1+z}{1-z}
$$

127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

Suy ra $\frac{(1+x)(1+y)}{(1-x)(1-y)}=\frac{1+z}{1-z}$, vì vậy

$$
z=\frac{(1+x)(1+y)-(1-x)(1-y)}{(1+x)(1+y)+(1-x)(1-y)}=\frac{x+y}{1+x y} .
$$

12.1) $f(x)=x^{2} \Rightarrow f(f(x))=(f(x))^{2}=\left(x^{2}\right)^{2}=x^{4}$

$$
\begin{aligned}
& g(x)=2^{x} \Rightarrow g(g(x))=2^{g(x)}=2^{2^{x}} \\
& f(g(x))=(g(x))^{2}=\left(2^{x}\right)^{2}=2^{2 x} \\
& g(f(x))=2^{f(x)}=2^{x^{2}} .
\end{aligned}
$$

2)

$$
\begin{aligned}
& f(x)=\operatorname{sgn} x \Rightarrow f(f(x))=\operatorname{sgnf}(x)=\operatorname{sgn}(x) \\
& g(x)=\frac{1}{x} \Rightarrow g(g(x))=\frac{1}{g(x)}=x(x \neq 0) \\
& f(g(x))=\operatorname{sgn}(g(x))=\operatorname{sgn} x(x \neq 0) \\
& g(f(x))=\frac{1}{f(x)}=\frac{1}{\operatorname{sgn} x}=\operatorname{sgn} x(x \neq 0)
\end{aligned}
$$

3)

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{l}
0, x \leq 0 \\
x,
\end{array}, x>0\right.
\end{aligned} \Rightarrow f(f(x))=\left\{\begin{array} { l }
{ 0 , f (x) \leq 0 } \\
{ f (x) , f (x) > 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
f(f(x))=f(x) \\
g(x)=\left\{\begin{array}{l}
0, x \leq 0 \\
-x^{2}, x>0
\end{array} \Rightarrow g(g(x))=\left\{\begin{array}{l}
0, g(x) \leq 0 \\
-(g(x))^{2}, g(x)>0
\end{array}\right.\right.
\end{array}\right.\right.
$$

Vì $g(x) \leq 0 \Rightarrow g(g(x))=0$

$$
\begin{aligned}
& f(g(x))=\left\{\begin{array}{l}
0, g(x) \leq 0 \\
g(x), g(x)>0
\end{array} \Rightarrow f(g(x))=0\right. \\
& g(f(x))=\left\{\begin{array}{l}
0, f(x) \leq 0 \\
-(f(x))^{2}, f(x)>0
\end{array}=\left\{\begin{array}{c}
0, x \leq 0 \\
-x^{2}, x>0
\end{array} \Rightarrow g(f(x))=g(x) .\right.\right.
\end{aligned}
$$

13. 14) Đặt $t=x+1, x=t-1, f(x+1)=x^{2}-3 x+2 \Rightarrow$

$$
\begin{aligned}
f(t) & =(t-1)^{2}-3(t-1)+2=t^{2}-5 t+6 ; \text { túc là } \\
f(x) & =x^{2}-5 x+6
\end{aligned}
$$

2) Cũng có thể đặt $t=x+\frac{1}{x}$ rồi giải x theo t như bài 1 , nhưng ở đây, để ý rằng :

$$
\begin{gathered}
x^{2}+\frac{1}{x^{2}}=\left(x+\frac{1}{x}\right)^{2}-2, \text { do đó } \\
f\left(x+\frac{1}{x}\right)=x^{2}+\frac{1}{x^{2}}=\left(x+\frac{1}{x}\right)^{2}-2=t^{2}-2
\end{gathered}
$$

nghīa là

$$
f(x)=x^{2}-2(|x| \geq 2)
$$

3) Có thể viết

$$
x+\sqrt{1+x^{2}}=\frac{x^{2}-1-x^{2}}{x-\sqrt{1+x^{2}}}=\frac{-1}{x-\sqrt{1+x^{2}}}
$$

Chia cả tử lẫn mã̃u cho. $x(x>0)$:

$$
\begin{gathered}
x+\sqrt{1+x^{2}}=\frac{-\frac{1}{x}}{1-\sqrt{\frac{1}{x^{2}}+1}}: \text { Như thế } \\
f\left(\frac{1}{x}\right)=\frac{-\frac{1}{x}}{1-\sqrt{\frac{1}{x^{2}}+1}}, f(x)=\frac{-x}{1-\sqrt{x^{2}+1}},(x>0) .
\end{gathered}
$$

4) Đặt $t=\frac{x}{1+x} \Rightarrow x=\frac{t}{1-t}$, do đó

$$
f\left(\frac{x}{1+x}\right)=x^{2} \Rightarrow f(t)=\left(\frac{t}{1-t}\right)^{2}, f(x)=\left(\frac{x}{1-x}\right)^{2} .
$$

127.0.0.1 ${ }_{28}$ downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
14. 1) $\mathrm{y}=2 \mathrm{x}+3, \mathrm{x}=\frac{1}{2}(\mathrm{y}-3)$, hàm ngược là :

$$
y=\frac{1}{2}(x-3)
$$

2) $y=x^{2} ; x= \pm \sqrt{y}$, với $x \leq 0$ hàm ngược là $y=-\sqrt{x}$ và với $\mathrm{x} \geq 0$, hàm ngược là $\mathrm{y}=\sqrt{\mathrm{x}}$.
3) Từ $y=\frac{1-x}{1+x}$, giải x theo y và được

$$
x=\frac{1-y}{1+y} \text {, do đó hàm ngược là } y=\frac{1-x}{1+x}, x \neq-1 \text {. }
$$

4) Giải x theo y từ phương trình $y=\sqrt{1-x^{2}}$ dược $x= \pm \sqrt{1-y^{2}}$, do đó
(a) $-1 \leq \mathrm{x} \leq 0$, hàm ngược là $\mathrm{y}=-\sqrt{1-\mathrm{x}^{2}}$
(b) $0 \leq \mathrm{x} \leq 1$, hàm ngược là $\mathrm{y}=\sqrt{1-\mathrm{x}^{2}}$.
5) $\mathrm{y}=\operatorname{sh} \mathrm{x}=\frac{1}{2}\left(\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x}}\right)$; gọi $\operatorname{ch} \mathrm{x}=\frac{1}{2}\left(\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}\right)$, dē tháy rằng $(\operatorname{ch} x+\operatorname{sh} x)(\operatorname{ch} x-\operatorname{sh} x)=\operatorname{ch}^{2} x-\operatorname{sh}^{2} x=1$. Suy ra $\sqrt{1+\mathrm{y}^{2}}=\frac{1}{2}\left(\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}\right)$, do dó $\mathrm{y}+\sqrt{1+\mathrm{y}^{2}}=\mathrm{e}^{\mathrm{x}}$, suy ra : $x=\ln \left(y+\sqrt{1+y^{2}}\right)$, do đó hàm ngược là $y=\ln \left(x+\sqrt{1+x^{2}}\right)$.
15. 16) $f(-x)=3(-x)-(-x)^{3}=x^{3}-3 x=-f(x)$
$\Rightarrow \mathrm{f}(\mathrm{x})$ là hàm lé.
127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2Q122
2) $f(-x)=\sqrt[3]{(I-(-x))^{2}}+\sqrt[3]{(1+(-x))^{2}}$

$$
=\sqrt[3]{(1+x)^{2}}+\sqrt[3]{(1-x)^{2}}=f(x) \Rightarrow f(x) \text { là hàm chẳn. }
$$

3) $f(-x)=a^{-x}+a^{-(-x)}=a^{x}+a^{-x}=f(x) \Rightarrow f(x)$ là hàm chẵn.
4) $f(-x)=\ln \left(\frac{1-(-x)}{1+(-x)}\right)=\ln \left(\frac{1+x}{1-x}\right)=\ln \left(\frac{1}{\frac{1-x}{1+x}}\right)=$

$$
=-\ln \frac{1-x}{1+x}, f(-x)=-f(x) \Rightarrow f(x) \text { là hàm lè. }
$$

5) $f(-x)=\ln \left(-x+\sqrt{1+(-x)^{2}}\right)=\ln \left(\sqrt{1+x^{2}}-x\right)$

$$
=\ln \left(\frac{1+x^{2}-x^{2}}{x+\sqrt{1+x^{2}}}\right)=\ln \left(\frac{1}{x+\sqrt{1+x^{2}}}\right)=-\ln \left(x+\sqrt{1+x^{2}}\right)
$$

$$
\mathrm{f}(-\mathrm{x})=-\mathrm{f}(\mathrm{x}) \Rightarrow \mathrm{f}(\mathrm{x}) \text { là hàm lẻ. }
$$

16. Luỗn có thể viết

$$
f(x)=\frac{1}{2}(f(x)+f(-x))+\frac{1}{2}(f(x)-f(-x)) .
$$

Gọi $g(x):=\frac{1}{2}(f(x)+f(-x))$,

$$
h(x):=\frac{1}{2}(f(x)-f(-x)) .
$$

Hiển nhiên $g(x)$ là hàm chẵn và $h(x)$ là hàm lẻ, do đó $\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})+\mathrm{h}(\mathrm{x})$ là tổng của một hàm số chẵn và một hàm sớ lẻ.
17. 1) $f(x+T)=A \cos (\lambda x+\lambda T)+B \sin (\lambda x+\lambda T)$

$$
=A \cos \lambda x+B \sin \lambda x ; \forall x
$$

$$
\Rightarrow A(\cos \lambda x-\cos (\lambda x+\lambda T))+B(\sin \lambda x-\sin (\lambda x+\lambda T))=0, \forall x
$$

$$
\Rightarrow \cos \lambda x-\cos (\lambda x+\lambda T)=0, \forall x
$$

127.0.0.30 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

$$
\begin{gathered}
\sin \lambda x-\sin (\lambda x+\lambda T)=0, \forall x \\
\Rightarrow \cos \lambda x=\cos (\lambda x+\lambda T), \quad \sin \lambda x=\sin (\lambda x+\lambda T) \Rightarrow T=\frac{2 \pi}{\lambda}
\end{gathered}
$$

Hàm số đã cho tuần hoàn với chu kì $\frac{2 \pi}{\lambda}$.
2) Dùng kết quả bài $1 ; \sin x$ có chu kì $2 \pi ; \sin 2 x$ có chu kì π và $\sin 3 x$ có chu kì $\frac{2 \pi}{3}$. Do vậy chu kì của hàm só $f(x)=\sin x+\frac{1}{2} \sin 2 x+\frac{1}{3} \sin 3 x$ là bội số chung nhỏ nhất của ba chu kì $2 \pi, \pi$ và $\frac{2 \pi}{3}$, nghīa là chu kì $T=2 \pi$.
3) Để ý rằng hàm số $\operatorname{tg} \lambda x$ có chu kì T nếu:

$$
\operatorname{tg} \lambda(x+T)=\operatorname{tg} \lambda x \Leftrightarrow \operatorname{tg}(\lambda x+\lambda T)=\operatorname{tg} \lambda x=\operatorname{tg}(\lambda x+\pi)
$$

$\Leftrightarrow \lambda T=\pi \Rightarrow T=\frac{\pi}{\lambda}, \lambda \neq 0$. Do đó $\operatorname{tg} \frac{x}{2}$ có chu kì $2 \pi ; \operatorname{tg} \frac{x}{3}$ có chu kì 3π. Do đó hàm só:

$$
f(x)=2 \operatorname{tg} \frac{x}{2}-3 \operatorname{tg} \frac{x}{3}
$$

có chu kì $\mathrm{T}=6 \pi$ là bội số chung nhỏ nhất của 2π và 3π.
4) Có thể viết $\sin ^{2} x=\frac{1}{2}-\frac{1}{2} \cos 2 x$, do vậy dùng kết quả bài 1 , suy ra $\mathrm{f}(\mathrm{x})=\sin ^{2} \mathrm{x}$ là một hàm số có chu kì $\mathrm{T}=\pi$.
5) Để $f(x)=\sin x^{2}$ có chu kì là $T>0$, phải có

$$
\sin (x+T)^{2}=\sin x^{2}=\sin \left(x^{2}+2 \pi\right)
$$

Suy ra:

$$
x^{2}+2 T x+T^{2}=x^{2}+2 \pi
$$

ức là T là nghiệm của phương trình bậc hai chứa tham số x :

$$
\mathrm{T}^{2}+2 \mathrm{xT}-2 \pi=0
$$

Dĩ nhiên, nghiệm T của phương trình đó phụ thuộc x, do vậy $\mathrm{f}(\mathrm{x})=\sin \mathrm{x}^{2}$ không phải là một hàm số tuần hoàn.
6) $\sqrt{\operatorname{tg}(x+T)}=\sqrt{\lg x}=\sqrt{\operatorname{tg}(x+\pi)}$.

Suy ra $\mathrm{f}(\mathrm{x})=\sqrt{\operatorname{tg} \mathrm{x}}$ tuần hoàn với chu kì π.
7) $\sin x$ có chu kì là $2 \pi ; \sin (x \sqrt{2})$ có chu kì $\pi \sqrt{2}$. Vì ta không tìm được số nguyên n nào để cho $\mathrm{n} \pi$ là bội só chựg nhỏ nhất của 2π và $\pi \sqrt{2}$, nên $\mathrm{f}(\mathrm{x})$ không tuần hoàn.
18. 1) $\mathrm{y}=\mathrm{u}^{3}, \mathrm{u}=3 \mathrm{x}^{2}-7 \mathrm{x}+1$;
2) $\mathrm{y}=2^{\mathrm{u}} ; \mathrm{u}=\operatorname{tg} \mathrm{v} ; \mathrm{v}=\frac{1}{\mathrm{x}}$;
3) $y=\ln u ; u=\operatorname{tg} v ; v=\frac{x}{2}$;
4) $y=\sqrt{u} ; \quad u=x+\sqrt{x}$;
5) $y=\arcsin u ; u=\sqrt{v} ; v=\frac{x}{1+x}$.
19. i) Từ tính tuần hoàn, chu kì $T=2 \pi$ và từ bảng một số giá trị của hàm số, có thể vẽ đồ thị từng điểm :

x	$-\frac{\pi}{4}$	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3 \pi}{4}$	π
$\sin \left(x+\frac{\pi}{4}\right)$	0	$\frac{\sqrt{2}}{2}$	1	$\frac{\sqrt{2}}{2}$	0	$-\frac{\sqrt{2}}{2}$

Hinh 2
127.0.0.2 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
2) Hàm só có chu kì $\mathrm{T}=\frac{2 \pi}{3}$ và dưới đây cho một só giá trị để vẽ từng điểm đồ thị của hàm só :

x	$-\frac{\pi}{3}$	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$
$\cos 3 \mathrm{x}$	-1	0	1	0	-1	0	1

Hinh 3
3) Hàm só có chu kì $T=6 \pi$ và từ bảng mợt số giá trị cho dưới đây có thể vē đồ thị từng điểm:

x	-2π	$-\pi$	0	π	2π	3π	4π
$\cos \frac{\mathrm{x}}{3}$	$-\frac{1}{2}$	$\frac{1}{2}$	1	$\frac{1}{2}$	$-\frac{1}{2}$	-1	$-\frac{1}{2}$

Hinh 4
4) Từ bảng một số giá trị hàm số cho dưới đây có thể vẽ đồ thị hàm số :

x	0	1	2
3^{x}	1	3	9

5) Bảng vài giá trị hàm só :

Hinh 5

Hinh 6

Chuong 3

GIỚI HẠN VÀ SỰ LIÊN TỤC CỦA HÀM SỐ MỘT BIẾN SỐ

A. $Đ \hat{E} \mathbf{E} \mathbf{B A ̀ I}$

1. Chựng minh rà̀ng dāy $\left\{\mathrm{x}_{\mathrm{n}}\right\}, \mathrm{x}_{\mathrm{n}}:=\mathbf{n}^{(-1)^{\mathrm{n}}}$ không dần tới vô cùng nhưng cũng không bị chặn.
2. Tính

$$
\lim _{n \rightarrow \infty}\left[\frac{1}{1.2}+\frac{1}{2.3}+\ldots+\frac{1}{n(n+1)}\right] .
$$

3. Tìm các giới hạn :
1) $\lim _{x \rightarrow 2} \frac{\left(x^{2}-x-2\right)^{20}}{\left(x^{3}-12 x+16\right)^{10}}$;
2) $\lim _{x \rightarrow 1} \frac{x+x^{2}+\ldots+x^{n}-n}{x-1}$
3) $\lim _{x \rightarrow 1} \frac{x^{100}-2 x+1}{x^{50}-2 x+1}$;
4) $\lim _{x \rightarrow a} \frac{\left(x^{n}-a^{n}\right)-n a^{n-1}(x-a)}{(x-a)^{2}}$.
4. Tìm các giới hạn :
1) $\lim _{x \rightarrow+\infty} \frac{\sqrt{x+\sqrt{x+\sqrt{x}}}}{\sqrt{x+1}}$;
2) $\lim _{x \rightarrow+\infty} \frac{\sqrt{x}+\sqrt[3]{x}+\sqrt[4]{x}}{\sqrt{2 x+1}}$.
5. Tìm các giới hạn :
1) $\lim _{x \rightarrow 0} \frac{\sqrt[m]{1+\alpha x}-\sqrt[n]{1+\beta x}}{x}$;
2) $\lim _{x \rightarrow 0} \frac{\sqrt[m]{1+\alpha x} \sqrt[n]{1+\beta x}-1}{x}$.
127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
6. Tìm các giới hạn :
1) $\lim _{x \rightarrow a} \frac{\sin x-\sin a}{x-a}$;
2) $\lim _{x \rightarrow 0} \frac{\sqrt{1+\operatorname{tg} x}-\sqrt{1+\sin x}}{x^{3}}$
3) $\lim _{x \rightarrow 0} \frac{1-\cos x \cos 2 x \cos 3 x}{1-\cos x}$;
4) $\lim _{x \rightarrow 0} \frac{\sqrt{\cos x}-\sqrt[3]{\cos x}}{\sin ^{2} x}$.
7. Tìm các giới hạn :
1) $\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x^{2}-5 x+4}$;
2) $\lim _{x \rightarrow+\infty}\left(\sqrt[3]{x^{3}+x^{2}-1}-x\right)$.
8. Tìm các giới hạn :
1) $\lim _{x \rightarrow+\infty}\left(\frac{3 x^{2}-x+1}{2 x^{2}+x+1}\right)^{\frac{x^{3}}{1-x}}$;
2) $\lim _{x \rightarrow \infty}\left(\frac{x^{2}-1}{x^{2}+1}\right)^{\frac{x-1}{x+1}}$
3) $\lim _{x \rightarrow 0} \sqrt[x]{1-2 x}$;
4) $\lim _{x \rightarrow+0} \sqrt[x]{\cos \sqrt{x}}$
5) $\lim (\sin x)^{\operatorname{tg} x}$;

$$
x \rightarrow \frac{\pi}{2}
$$

6) $\lim _{x \rightarrow+\infty}[\sin \ln (x+1)-\sin \ln x]$.
7) $\lim _{x \rightarrow 0} \frac{e^{\alpha x}-e^{\beta x}}{\sin \alpha x-\sin \beta x}$;
8) $\lim _{n \rightarrow+\infty} n^{2}(\sqrt[n]{x}-\sqrt[n+1]{x}),(x>0)$.
9. Cho đồ thị của hàm số liên tục $\mathrm{y}=\mathrm{f}(\mathrm{x})$, cho trước điểm có hoành độ $x=a$, cho trước số $\varepsilon>0$, hãy tìm số $\delta>0$ sao cho khi $|x-a|<\delta$ có $|f(x)-f(a)|<\varepsilon$.
10. Dùng dịnh nghĩa " $\varepsilon-\delta$ " để chứng minh hàm số $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$ liên tục tại điểm $x=5$ và điền vào chỗ trống bảng dưới đây :

$\varepsilon+$	1	0,1	0,01	0,001	\cdots
δ					

11. Cho hàm số $\mathrm{f}(\mathrm{x}):=\mathrm{x}+0,001 \mathrm{E}(\mathrm{x})$, trong đó $\mathrm{E}(\mathrm{x})$ là phần nguyền của x (xem thí dụ (d) mục 2.1 , chương 2 , sách đã dẫn). Chứng minh rằng với mổi $\varepsilon>0,001$ có thể tìm được $\delta:=\delta(\varepsilon, x)>0$ sao cho $k h i\left|x^{\prime}-x\right|<\delta$ có $\left|f\left(x^{\prime}\right)-f(x)\right|<\varepsilon$ và với $0<\varepsilon \leq 0,001$ thì với bất kì giá trị nào của x cũng không tìm được δ thoả mãn yêu cầu trên. Hàm số $f(x)$ không liên tục tại những điểm nào ?
12. Xét sự liên tục của các hàm só :
1) $f(x)=|x|$
2) $f(x)=\left\{\begin{array}{cc}\left(x^{2}-4\right) /(x-2) & \text { nếu } x \neq 2 \\ A & \text { nếu } x=2\end{array}\right.$
3) $f(x)= \begin{cases}x \sin \frac{1}{x}, & \text { nếu } x \neq 0 \\ 0, & \text { nếu } x=0\end{cases}$
4) $f(x)= \begin{cases}e^{-\frac{1}{x^{2}}}, & \text { nếu } x \neq 0 \\ 0, & \text { nếu } x=0\end{cases}$
5) $f(x)=\left\{\begin{array}{l}2 x, \quad \text { nếu } 0 \leq x \leq 1 \\ 2-x, \text { nếu } 1<x \leq 2\end{array}\right.$
6) $\mathrm{f}(\mathrm{x})= \begin{cases}\sin \pi \mathrm{x}, & \text { nếu } \mathrm{x} \text { hữu } \mathrm{tỉ} \\ 0, & \text { nếu } \mathrm{x} \text { vô tỉ }\end{cases}$
13. Cho $f(x)= \begin{cases}\mathrm{e}^{x}, & \text { nếu } x<0 \\ a+x, & \text { nếu } x \geq 0\end{cases}$

Hāy chọn số a sao cho $\mathrm{f}(\mathrm{x})$ liên tục.
14. Cho f và g là hai hàm só́ liên tục trên $[a, b]$ và giả sử $f=g$ tại mọi điểm hữu tỉ của $[\mathrm{a}, \mathrm{b}]$. Hỏi c có thể kết luận $\mathrm{f}=\mathrm{g}$ được không ?
15. Dùng phương pháp phân đôi, tìm nghiệm dương của phương trình $1,8 x^{2}-\sin 10 x=0$ với sai số tuyệt đối không vượt quá 10^{-5}. 127.0:0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
16. Xét xem trong ba hàm số $\mathrm{f}=\sqrt{\mathrm{x}}, \mathrm{g}=\mathrm{x}^{2}$ và $\mathrm{h}=\cos \mathrm{x}^{2}$, hàm số nào liên tục đều trên \mathbf{R}^{+}.

B. LờI GIẢI

1. Vì $(-1)^{n}$ bằng -1 hay +1 tuỳ theo n lẻ hay chẵ, do đó dãy $\left\{x_{n}\right\}$ lấy các giá trị xen kẽ nhau $\frac{1}{\mathrm{n}}$ và n , do đó không thể có số $\mathrm{A}>0$ để $\mathrm{n}^{(-1)^{\mathrm{n}}}>\mathrm{A}, \forall \mathrm{n}$ thoả $\mathrm{n}>\mathrm{n}_{\mathrm{o}}$ nào đó, và cūng không thể tìm được số $\mathrm{B}>0$ để $\mathrm{n}^{(-1)^{\mathrm{n}}}<\mathrm{B}, \forall \mathrm{n}$ thoả $\mathrm{n}>\mathrm{n}_{1}$ nào đó. Do vạy $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ không dần tới vô cùng nhưng cūng không bị chặn.
2. Có thể viết $\frac{1}{n(n+1)}=\frac{n+1-n}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$. Do đó :

$$
\begin{gathered}
\frac{1}{1 \cdot 2}=\frac{1}{1}-\frac{1}{2} \\
\frac{1}{2 \cdot 3}=\frac{1}{2}-\frac{1}{3} \\
\vdots \\
\frac{1}{(n-1) n}=\frac{1}{n-1}-\frac{1}{n} \\
\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1} .
\end{gathered}
$$

Cộng vế với vế các đẳng thức trên ta được

$$
\frac{1}{1.2}+\frac{1}{2.3}+\ldots+\frac{1}{n(n+1)}=1-\frac{1}{n+1} .
$$

Vì $\frac{1}{n+1} \rightarrow 0$ khị $n \rightarrow \infty$ nên :
127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012 38

$$
\lim _{n \rightarrow+\infty}\left[\frac{1}{1.2}+\frac{1}{2.3}+\ldots+\frac{1}{n(n+1)}\right]=1
$$

3. 4) Để ý rằng

$$
x^{2}-x-2=(x+1)(x-2) ; x^{3}-12 x+16=(x-2)^{2}(x+4)
$$

Do đó:

$$
\frac{\left(x^{2}-x-2\right)^{20}}{\left(x^{3}-12 x+16\right)^{10}}=\frac{(x+1)^{20}(x-2)^{20}}{(x+4)^{10}(x-2)^{20}}=\frac{(x+1)^{20}}{(x+4)^{10}}
$$

Vậy $\quad \lim _{x \rightarrow 2} \frac{\left(x^{2}-x-2\right)^{20}}{\left(x^{3}-12 x+16\right)^{10}}=\frac{(2+1)^{20}}{(2+4)^{10}}=\frac{3^{20}}{6^{10}}=$

$$
=\left(\frac{1}{2}\right)^{10} \cdot 3^{10}=\left(\frac{3}{2}\right)^{10}
$$

2) Có thể viết
$x+x^{2}+\ldots+x^{n}-n=(x-1)+\left(x^{2}-1\right)+\ldots+\left(x^{n}-1\right)$
$=(x-1)\left[1+(x+1)+\left(x^{2}+x+1\right)+\ldots+\left(x^{n-1}+x^{n-2}+\ldots+x+1\right)\right]$.
Do đó :

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{x+x^{2}+\ldots+x^{n}-n}{x-1} & =\lim _{x \rightarrow 1}\left[1+(x+1)+\ldots+\left(x^{n-1}+\ldots+x+1\right)\right] \\
& =1+2+3+\ldots+n=\frac{n(n+1)}{2}
\end{aligned}
$$

3) Có thể viết

$$
\begin{aligned}
x^{50}-2 x+1 & =x^{50}-x-(x-1) \\
& =x\left(x^{49}-1\right)-(x-1) \\
& =(x-1) x\left(x^{48}+x^{47}+\ldots+x+1\right)-(x-1) \\
& =(x-1)\left[x\left(x^{48}+x^{47}+\ldots+x+1\right)-1\right]
\end{aligned}
$$

(dùng công thức $x^{n}-1=(x-1)\left(x^{n-1}+x^{n-2}+\ldots+x+1\right)$).

Tương tự:

$$
x^{100}-2 x+1=(x-1)\left[x\left(x^{98}+x^{97}+\ldots+x+1\right)-1\right]
$$

Do đó :

$$
\lim _{x \rightarrow 1} \frac{x^{100}-2 x+1}{x^{50}-2 x+1}=\frac{98}{48}=2 \frac{1}{24}
$$

4) Có thể viết

$$
\begin{aligned}
& x^{n}-a^{n}-n a^{n-1}(x-a)= \\
= & (x-a)\left(x^{n-1}+a x^{n-2}+\ldots+a^{n-1}\right)-n a^{n-1}(x-a) \\
= & (x-a)\left[\left(x^{n-1}+a x x^{n-2}+\ldots+a^{n-1}\right)-n a^{n-1}\right]
\end{aligned}
$$

và :

$$
\begin{aligned}
& x^{n-1}+a x^{n-2}+\ldots+a^{n-1}-n a^{n-1}= \\
= & \left(x^{n-1}-a^{n-1}\right)+\left(a x^{n-2}-a^{n-1}\right)+\ldots+\left(x a^{n-2}-a^{n-1}\right) \\
= & (x-a)\left(x^{n-2}+\ldots+a^{n-2}\right)+a\left(x^{n-2}-a^{n-2}\right)+\ldots+a^{n-2}(x-a) \\
= & (x-a)\left[\left(x^{n-2}+\ldots+a^{n-2}\right)+a\left(x^{n-3}+\ldots+a^{n-3}\right)+\ldots+a^{n-2}\right] .
\end{aligned}
$$

Do đó :

$$
\begin{aligned}
& x^{n}-a^{n}-n a^{n-1}(x-a)= \\
= & (x-a)^{2}\left[\left(x^{n-2}+\ldots+a^{n-2}\right)+a\left(x^{n-3}+\ldots+a^{n-3}\right)+\ldots+a^{n-2}\right]
\end{aligned}
$$

và

$$
\lim _{x \rightarrow a} \frac{x^{n}-a^{n}-n a^{n-1}(x-a)}{(x-a)^{2}}=\frac{n(n-1)}{2} a^{n-2}
$$

4. 5) Chia tử và mẫu của phân thức cho $\sqrt{\mathrm{x}}$ và̀ được

$$
\frac{\sqrt{x+\sqrt{x+\sqrt{x}}}}{\sqrt{x+1}}=\frac{\sqrt{1+\sqrt{\frac{1}{x^{2}}+\sqrt{\frac{1}{x^{4}}}}}}{\sqrt{1+\frac{1}{x}}}
$$

127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

Khi $x \rightarrow+\infty$ thì $\frac{1}{x} \rightarrow 0 ; \frac{1}{x^{2}} \rightarrow 0 ; \frac{1}{x^{4}} \rightarrow 0$, do đó

$$
\lim _{x \rightarrow+\infty} \frac{\sqrt{x+\sqrt{x+\sqrt{x}}}}{\sqrt{x+1}}=1
$$

2) Cũng như bài trên, chia tử và mẫu cho \sqrt{x} và chuyển qua giới hạn, có

$$
\lim _{x \rightarrow+\infty} \frac{\sqrt{x}+\sqrt[3]{x}+\sqrt[4]{x}}{\sqrt{2 x+1}}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}
$$

5.1) Để ý rằng :

$$
\frac{\sqrt[m]{1+\alpha x}-1}{x}=\frac{\sqrt[m]{1+\alpha x}-1}{\alpha x} \cdot \alpha
$$

Dùng kết quả của thí dụ (b) trong mục 3.2 , các tính chất giới hạn, trang 72 sách Toán học cao cấp tập II (của cùng tác giả) suy ra :

$$
\lim _{x \rightarrow 0} \frac{\sqrt[m]{1+\alpha x}-1}{x}=\frac{\alpha}{m}
$$

Và bây giờ, có :

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sqrt[m]{1+\alpha x}-\sqrt[n]{1+\beta x}}{x} & =\lim _{x \rightarrow 0} \frac{(\sqrt[m]{1+\alpha x}-1)-(\sqrt[n]{1+\beta x}-1)}{x} \\
& =\frac{\alpha}{m}-\frac{\beta}{n} .
\end{aligned}
$$

2) Có thể viết

$$
\sqrt[m]{1+\alpha x} \sqrt[n]{1+\beta x}-1=(\sqrt[m]{1+\alpha x}-1) \sqrt[n]{1+\beta x}+(\sqrt[n]{1+\beta x}-1)
$$

Do đó, dùng kết quả bài trên, suy ra :

$$
\lim _{x \rightarrow 0} \frac{\sqrt[m]{1+\alpha x} \sqrt[n]{1+\beta x}-1}{x}=\frac{\alpha}{m}+\frac{\beta}{n}
$$

6. 7) Ta có :

$$
\frac{\sin x-\sin a}{x-a}=\frac{2 \cos \frac{x+a}{2} \sin \frac{x-a}{2}}{\frac{x-a}{2}} \cdot \frac{1}{2} .
$$

Để y rà̀ng

$$
\frac{\sin \frac{x-a}{2}}{\frac{x-a}{2}} \rightarrow 1 \text { khi } x \rightarrow a \text { và } \cos \frac{x+a}{2} \rightarrow \cos a \text { khi } x \rightarrow a,
$$

do đó $\lim _{x \rightarrow a} \frac{\sin x-\sin a}{x-a}=\cos a$.
2) Có thể viết

$$
\begin{aligned}
& \frac{\sqrt{1+\operatorname{tg} x}-\sqrt{1+\sin x}}{x^{3}}=\frac{1+\operatorname{tg} x-1-\sin x}{x^{3}(\sqrt{1+\operatorname{tg} x}+\sqrt{1+\sin x})} \\
= & \frac{\operatorname{tg} x}{x} \cdot \frac{(1-\cos x)}{x^{2}} \cdot \frac{1}{\sqrt{1+\operatorname{tg} x}+\sqrt{1+\sin x}}
\end{aligned}
$$

Như ta đā biết

$$
\lim _{x \rightarrow 0} \frac{\operatorname{tg} x}{x}=1: \lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}=\frac{1}{2}(\text { sách đã dẫn, trang } 75)
$$

và $\lim _{x \rightarrow 0}(\sqrt{1+\operatorname{tg} x}+\sqrt{1+\sin x})=2$.
Do đó

$$
\lim _{x \rightarrow 0} \frac{\sqrt{1+\operatorname{tg} x}-\sqrt{1+\sin x}}{x^{3}}=\frac{1}{4}
$$

3) Có thể viết

$1-\cos x \cos 2 x \cos 3 x=(1-\cos x) \cos 2 x \cos 3 x+(1-\cos 2 x) \cos 3 x+$
để y rà̀ng

$$
\frac{1-\cos k x}{x^{2}}=\frac{1-\cos k x}{k^{2} x^{2}} \cdot k^{2}
$$

nghĩa là

$$
\lim _{x \rightarrow 0} \frac{1-\cos k x}{x^{2}}=\frac{k^{2}}{2} \text { (xem bài trên) }
$$

và $\quad \lim _{x \rightarrow 0} \cos 2 x=\lim _{x \rightarrow 0} \cos 3 x=\lim _{x \rightarrow 0} \cos x=1$.
Do đó :

$$
\lim _{x \rightarrow 0} \frac{1-\cos x \cos 2 x \cos 3 x}{1-\cos x}=\lim _{x \rightarrow 0} \frac{\frac{1-\cos x \cos 2 x \cos 3 x}{x^{2}}}{\frac{1-\cos x}{x^{2}}}=14 .
$$

4) Co thể viết

$$
\frac{\sqrt{\cos x}-\sqrt[3]{\cos x}}{\sin ^{2} x}=\frac{(\sqrt{\cos x}-1)-(\sqrt[3]{\cos x}-1)}{\sin ^{2} x} .
$$

Ta có :

$$
\frac{\sqrt{\cos x}-1}{\sin ^{2} x}=\frac{\cos x-1}{\sin ^{2} x(\sqrt{\cos x}+1)}=\frac{\frac{\cos x-1}{x^{2}}}{\frac{\sin ^{2} x(\sqrt{\cos x}+1)}{x^{2}}}
$$

Khi $x \rightarrow 0$ thì :

$$
\frac{\cos \mathrm{x}-1}{\mathrm{x}^{2}} \rightarrow-\frac{1}{2} ; \frac{\sin ^{2} \mathrm{x}}{\mathrm{x}^{2}} \rightarrow 1 ; \sqrt{\cos \mathrm{x}}+1 \rightarrow 2 .
$$

Do đó :

$$
\lim _{x \rightarrow 0} \frac{\sqrt{\cos x}-1}{\sin ^{2} x}=-\frac{1}{4}
$$

127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

Tương tự:

$$
\frac{\sqrt[3]{\cos x}-1}{\sin ^{2} x}=-\frac{\cos x-1}{\sin ^{2} x\left(\sqrt[3]{(\cos x)^{2}}+\sqrt[3]{\cos x}+1\right)}
$$

Do đó :

$$
\lim _{x \rightarrow 0} \frac{\sqrt[3]{\cos x}-1}{\sin ^{2} x}=-\frac{1}{6}
$$

Vạy: $\quad \lim _{x \rightarrow 0} \frac{\sqrt{\cos x}-\sqrt[3]{\cos x}}{\sin ^{2} x}=-\frac{1}{4}+\frac{1}{6}=-\frac{1}{12}$.
7. 1) $\frac{\sqrt{x}-2}{x^{2}-5 x+4}=\frac{(\sqrt{x}-2)}{(x-4)(x-1)} \cdot \frac{(\sqrt{x}+2)}{(\sqrt{x}+2)}$

$$
=\frac{(x-4)}{(x-4)(x-1)(\sqrt{x}+2)}=\frac{1}{(x-1)(\sqrt{x}+2)}
$$

Vậy:

$$
\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x^{2}-5 x+4}=\lim _{x \rightarrow 4} \frac{1}{(x-1)(\sqrt{x}+2)}=\frac{1}{12}
$$

2) $\sqrt[3]{x^{3}+x^{2}-1}-x=$

$$
\left.=\frac{\left(\sqrt[3]{x^{3}+x^{2}-1}-x\right)\left(\sqrt[3]{\left(x^{3}+x^{2}-1\right)^{2}}+x \sqrt[3]{x^{3}}+x^{2}-1\right.}{}+x^{2}\right) \frac{\left.\sqrt[3]{\left(x^{3}+x^{2}-1\right)^{2}}+x \sqrt[3]{x^{3}+x^{2}-1}+x^{2}\right)}{(\sqrt{2})}
$$

$$
=\frac{x^{3}+x^{2}-1-x^{3}}{x^{2}\left(\sqrt[3]{1+\frac{2}{x}+\frac{1}{x^{2}}-\frac{2}{x^{3}}-\frac{2}{x^{4}}+\frac{1}{x^{6}}}+\sqrt[3]{1+\frac{1}{x}-\frac{1}{x^{2}}}+1\right)}
$$

do đó :

$$
\lim _{x \rightarrow+\infty}\left(\sqrt[3]{x^{3}+x^{2}-1}-x\right)=\frac{1}{3}
$$

127.0.0.1 doyynloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
8. 1) $\frac{\mathrm{x}^{3}}{1-\mathrm{x}}=-\mathrm{x}^{2}-\mathrm{x}-1+\frac{1}{1-\mathrm{x}}$.

Khi $x \rightarrow+\infty$ thì $\frac{x^{3}}{1-x} \rightarrow-\infty$. Do đó khi $x \rightarrow+\infty$ thì

$$
\left(\frac{3 x^{2}-x+1}{2 x^{2}+x+1}\right)^{\frac{x^{3}}{1-x}} \rightarrow\left(\frac{3}{2}\right)^{-\infty}
$$

nghĩa là : $\quad \lim _{x \rightarrow+\infty}\left(\frac{3 x^{2}-x+1}{2 x^{2}+x+1}\right)^{\frac{x^{3}}{1-x}}=0$.
2) $\lim _{x \rightarrow \infty} \frac{x^{2}-1}{x^{2}+1}=1: \lim _{x \rightarrow \infty} \frac{x-1}{x+1}=1$.

Vậy: $\lim _{x \rightarrow \infty}\left(\frac{x^{2}-1}{x^{2}+1}\right)^{\frac{x-1}{x+1}}=1$.
3) Đặt : $A:=\sqrt[x]{1-2 x}=(1-2 x)^{\frac{1}{x}}$, do đó :'

$$
\ln A=\frac{\ln (1-2 x)}{x}=(-2) \cdot \frac{\ln (1-2 x)}{-2 x}
$$

Dùng công thức (3.17a) trang 89 (sách đã dẩn)

$$
\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}=1
$$

Có : $\lim _{x \rightarrow 0} \ln A=\lim _{x \rightarrow 0}(-2) \cdot \frac{\ln (1-2 x)}{-2 x}=-2$.
Vạy $\lim _{x \rightarrow 0} A=\lim _{x \rightarrow 0} \sqrt[x]{1-2 x}=e^{-2}$.
4) Đ̣̣̆ı $A:=\sqrt[x]{\cos \sqrt{x}}=(1+(\cos \sqrt{x}-1))^{\frac{1}{x}}$. Khi dó

$$
\ln A=\frac{\ln (1+(\cos \sqrt{x}-1))}{x}=\frac{\ln (1+(\cos \sqrt{x}-1))}{(\cos \sqrt{x}-1)} \cdot \frac{\cos \sqrt{x}-1}{x} .
$$

127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

Để ý rằng :

$$
\lim _{x \rightarrow 0} \frac{\cos \sqrt{x}-1}{x}=\lim _{x \rightarrow 0}-\frac{1-\cos \sqrt{x}}{(\sqrt{x})^{2}}=-\frac{1}{2} \text { (bài 6.2) }
$$

và $\quad \lim _{x \rightarrow 0} \frac{\ln (1+(\cos \sqrt{x}-1))}{(\cos \sqrt{x}-1)}=1$.
Do đó $\quad \lim _{x \rightarrow 0} \ln A=-\frac{1}{2}$ và cuối cùng

$$
\lim _{x \rightarrow 0} \sqrt[x]{\cos \sqrt{x}}=e^{-\frac{1}{2}}
$$

5) Đặt $A=(\sin x)^{\operatorname{tgx}}=[1+(\sin x-1)]^{\operatorname{tgx}}$,

$$
\begin{aligned}
\ln A & =\operatorname{tg} x \ln (1+(\sin x-1))=\frac{\ln (1+(\sin x-1))}{\operatorname{cotg} x}= \\
& =\frac{\ln (1+(\sin x-1))}{\sin x-1} \cdot \frac{\sin x-1}{\operatorname{cotg} x}
\end{aligned}
$$

và $\frac{\sin x-1}{\operatorname{cotg} x}=\sin x \cdot \frac{\sin x-1}{\cos x}$.
Do đó $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin x-1}{\operatorname{cotg} x}=0$.
Cuối cùng

$$
\begin{aligned}
& \lim _{x \rightarrow \frac{\pi}{2}} \ln A=0, \text { nghĩa là : } \\
& \lim _{x \rightarrow \frac{\pi}{2}} A=\lim _{x \rightarrow \frac{\pi}{2}}(\sin x)^{\lg x}=e^{o}=1 .
\end{aligned}
$$

6) $\sin \ln (x+1)-\sin \ln x=$

$$
\begin{aligned}
& =2 \cos \left[\frac{1}{2}(\ln (x+1)+\ln x)\right] \sin \left[\frac{1}{2}(\ln (x+1)-\ln x)\right] \\
& =2 \cos \left(\frac{1}{2} \ln (x(x+1))\right) \sin \left(\frac{1}{2} \ln \left(\frac{x+1}{x}\right)\right)
\end{aligned}
$$

và $\ln \frac{x+1}{x} \rightarrow \ln 1=0$ khi $x \rightarrow \infty$ do đó :

$$
\lim _{x \rightarrow \infty}[\sin \ln (x+1)-\sin \ln x]=0 .
$$

7) Để ý rà̀ng

$$
\lim _{x \rightarrow 0} \frac{e^{\alpha x}-1}{x}=\lim _{x \rightarrow 0} \alpha \cdot \frac{e^{\alpha x}-1}{\alpha x}=\alpha
$$

và

$$
\frac{e^{\alpha x}-e^{\beta x}}{\sin \alpha x-\sin \beta x}=\frac{\left(e^{\alpha x}-1\right)+\left(1-e^{\beta x}\right)}{\sin \alpha x-\sin \beta x}=\frac{\frac{e^{\alpha x}-1}{x}-\frac{e^{\beta x}-1}{x}}{\frac{\sin \alpha x}{x}-\frac{\sin \beta x}{x}}
$$

Do đó

$$
\lim _{x \rightarrow 0} \frac{e^{\alpha x}-e^{\beta x}}{\sin \alpha x-\sin \beta x}=\frac{\alpha-\beta}{\alpha-\beta}=1
$$

8) Có thể viết

$$
\begin{aligned}
n^{2}(\sqrt[n]{x}-\sqrt[n+1]{x}) & =n^{2}\left(x^{\frac{1}{n}}-x^{\frac{1}{n+1}}\right)=n^{2} \cdot x^{\frac{1}{n+1}}\left(\frac{1}{x^{n(n+1)}}-1\right) \\
& =x^{\frac{1}{n+1}} \frac{x^{\frac{1}{n(n+1)}}-1}{\frac{1}{n^{2}}}=\frac{\left.x^{\frac{1}{n+1}\left(\frac{1}{\frac{1}{n(n+1)}}-1\right.}\right)}{\frac{n+1}{n} \cdot \frac{1}{n(n+1)}}
\end{aligned}
$$

127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

$$
=\frac{n}{n+1} x^{\frac{1}{n+1}} \frac{\left(x^{\frac{1}{n(n+1)}}-1\right)}{\frac{1}{n(n+1)}}
$$

Bây giờ dùng công thức (3.18) trang 89 (sách đã dẩn) :

$$
\lim _{\alpha \rightarrow 0} \frac{a^{\alpha}-1}{\alpha}=\ln a(a>0)
$$

ta có :

$$
\begin{aligned}
& \frac{1}{n(n+1)} \rightarrow 0 \text { khi } n \rightarrow \infty, \\
& \frac{1}{x^{n+1}} \rightarrow 1 \text { khi } n \rightarrow \infty, \\
& \frac{x^{\frac{1}{n(n+1)}}-1}{\frac{1}{n(n+1)}} \rightarrow \ln x(x>0) \text { khi } n \rightarrow \infty
\end{aligned}
$$

và cuối cùng :

$$
\lim _{n \rightarrow \infty} n^{2}(\sqrt[n]{x}-\sqrt[n+1]{x})=\ln x
$$

9. Hàm số $y=f(x)$ liên tục, có đồ thị là một dường liền (hình 7), trẻn đồ thị đó chọn điểm $\mathrm{M}(\mathrm{a}, \mathrm{f}(\mathrm{a}))$.

Từ M hạ MQ, MP lần lượt. vuông góc với trục toạ độ. Lắy P là trung điểm, trên trục tung lấy doạn $\mathrm{RV}=2 \varepsilon$ với $\varepsilon>0$ tuỳ ý cho trước. Từ R và V vẽ các đường song song với trục hoành, chúng cắt

đồ thị $\mathrm{y}=\mathrm{f}(\mathrm{x})$ tại N và L . Từ N và L hạ NS và LW vuông góc với trục hoành, khi đó dặt $2 \delta=\mathrm{SW}$; và nhìn hình vẽ ta thấy rằng khi x lọt vào đoạn SW thì $\mathrm{f}(\mathrm{x})$ lọt vào đoạn RV và điều đó chứng tỏ rằng, với $\varepsilon=\frac{V R}{2}$ thì khi $(x-a)<\delta=\frac{S W}{2}$, sẽ có $|f(x)-f(a)|<\varepsilon$.
10. Muớn chứng minh $f(x)=x^{2}$ liên tục tại điểm $x=5$ ta phải chứng minh rằng với bất kì $\varepsilon>0$ cho trước luôn tìm được $\delta>0$ sao cho

$$
|\mathrm{x}-5|<\delta \Rightarrow|\mathrm{f}(\mathrm{x})-\mathrm{f}(5)|=\left|\mathrm{x}^{2}-5^{2}\right|<\varepsilon .
$$

Thạt vậy, có thể viết

$$
\left|x^{2}-5^{2}\right|=|(x-5)(x+5)| .
$$

Vì ta chỉ xét những giá trị x rất gần $x=5$ nên có thể giả thiết, chẳng hạn $|x+5|<10$.

Do đó $\left|\mathrm{x}^{2}-5^{2}\right|<|\mathrm{x}-5| 10$ và muớn $\left|\mathrm{x}^{2}-5^{2}\right|<\dot{\varepsilon}$, chí cồn $10|x-5|<\varepsilon$, nghĩa là $|x-5|<\frac{\varepsilon}{10}$.

Do đó chỉ cấn chọn $\delta=\frac{\varepsilon}{10}$ và như thế có :

ε	1	0,1	0,01	0,001	\ldots
δ	0,1	0,01	0,001	0,0001	\ldots

11. Theo giả thiết, ta có (hình 8).

Với $\mathbf{x}=\mathbf{n} \in \mathbf{Z}$ thì

$$
\mathrm{f}(\mathrm{n}+0)-\mathrm{f}(\mathrm{n}-0)=0,001 .
$$

Với $x \notin \mathbf{Z}$ thì

$$
f(x+0)=f(x-0)
$$

Vậy với $\varepsilon>0,001$, luôn tìm được

Hinh 8
$\delta(\varepsilon, x)>0$ thoả $\left|\mathrm{x}^{\prime}-\mathrm{x}\right|<\delta$
$\Rightarrow\left|f\left(x^{\prime}\right)-f(x)\right|<\varepsilon$. Với $\varepsilon \leq 0,001$; tại $\mathrm{x}=\mathrm{n} \in \mathrm{Z}$ thì $\delta(\varepsilon, \mathrm{x})=0$, do đó không tồn tại δ thoả yêu cầu. Hàm số $\mathrm{f}(\mathrm{x})$ không liên tục tại $\mathrm{x}=\mathrm{n} \in \mathbf{Z}$.
12. 1) $f(x)=|x|=\left\{\begin{array}{c}x, x \geq 0 \\ -x, x<0\end{array}\right.$

Dī nhiên $f(x)$ liên tục tại mọi $x \neq 0$; tại $x=0$, ta cūng có

$$
f(0)=0=\lim _{x \rightarrow 0} x=\lim _{x \rightarrow 0}(-x)
$$

Do đó $\mathrm{f}(\mathrm{x})$ liên tục với mọ̣i x .
2) Có $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\lim _{x \rightarrow 2}(x+2)=4$.

Do vậy nếu $A=4$ thì $f(x)$ liên tục tại $x=2$ và nếu $A \neq 4$ thì $f(x)$ gián đoạn tại $x=2$.
3) Vi $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} x \sin \frac{1}{x}=0$ và $x, \sin \frac{1}{x}$ liên tục tại mọi $x \neq 0$ và theo giả thiết $f(0)=0$ nên $f(x)$ liên tục với mọi x.
4) $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} e^{-\frac{1}{x^{2}}}=0$ và $f(0)=0$ nên $f(x)$ liên tục với mọi x.
5) Theo giả thiết $\mathrm{f}(\mathrm{x})$ xác định trong đoạn $[0,2]$ và $\mathrm{f}(\mathrm{x})$ liên tục trong các khoảng $[0,1)$ và $(1,2]$. Ngoài ra $\lim _{x \rightarrow 1-0} f(x)=2$; $\lim _{x \rightarrow 1+0} f(x)=1$, vậy $f(x)$ gián doạn tại $x=1$.
6) $f(k)=\sin k \pi=0, \forall k \in Z ; f(x) \neq 0 . \forall x \neq k, k \in Z$. Ngoài ra $f(x)=0$ khi x vô tỉ, do đó $f(x)$ gián đọ̣n tại mọi $x \neq k, k \in \mathbf{Z}$.
127.0.0.1 ggwnloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012 4торосстгв $^{\text {g }}$
13. Hiển nhiên $\mathrm{f}(\mathrm{x})$ liên tục tại mọi $\mathrm{x} \neq 0$; ngoài ra

$$
\begin{aligned}
& \lim _{x \rightarrow 0-0} f(x)=\lim _{x \rightarrow 0-0} e^{x}=1 \text { và } \\
& \lim _{x \rightarrow 0+0} f(x)=\lim _{x \rightarrow 0+0}(a+x)=a
\end{aligned}
$$

Do đó $\mathrm{f}(\mathrm{x})$ liên tục tại $\mathrm{x}=0 \mathrm{khi} \mathrm{a}=1$.
14. Gọi x_{0} là điểm vô tỉ, $x_{o} \in[a, b]$, gọi α là số thập phân hữu tỉ xấp xỉ dưới của x_{o}, viết đến 10^{-n}, vì $\mathrm{f}=\mathrm{g}$ tại những điểm hữu tỉ : $f(\alpha)=g(\alpha)$, do đó tồn tại $n_{o} \in N$ sao cho khi $n \geq n_{o}, \cos \alpha \in[a, b]$:

$$
f\left(x_{0}\right)-g\left(x_{0}\right)=f\left(x_{o}\right)-f(\alpha)-\left(g\left(x_{o}\right)-g(\alpha)\right)
$$

Vì $\left|\mathrm{x}_{\mathrm{o}}-\alpha\right|<10^{-\mathrm{n}}$ nên $\forall \varepsilon>0, \exists \mathrm{n}_{1} \in \mathrm{~N}$ sao cho $\mathrm{n} \geq \mathrm{n}_{1} \Rightarrow$ $\left|f\left(x_{0}\right)-f(\alpha)\right|<\frac{\varepsilon}{2}$ và $\left|g\left(x_{0}\right)-g(\alpha)\right|<\frac{\varepsilon}{2}$.
Do đó $\left|f\left(\mathrm{x}_{0}\right)-\mathrm{g}\left(\mathrm{x}_{\mathrm{o}}\right)\right|<\varepsilon$.
Vì ε là tuỳ y, suy ra $f\left(x_{0}\right)=g\left(x_{0}\right) \Rightarrow f(x)=g(x)$.
15. Xét hàm ố $\mathrm{f}(\mathrm{x})=1,8 \mathrm{x}^{2}-\sin 10 \mathrm{x}$ và tính : $\mathrm{f}(0,69)<0 ; \mathrm{f}(0,7)>0$, do đó nghiệm của phương trình $\mathrm{f}(\mathrm{x})=0$ nằm trong khoảng $[0,69,0,7]$ Xét $\mathrm{x}_{1}=\frac{1}{2}(0,69+0,7)=0,695, \mathrm{f}(0,695)<0$;

Xét $\mathrm{x}_{2}=\frac{1}{2}(0,695+0,7)=0,6975, \mathrm{f}(0,6975)<0$;
Xét $\mathrm{X}_{3}=\frac{1}{2}(0,6975+0,7)=0,69875, \mathrm{f}(0,69875)<0$;
Xét $\mathrm{X}_{4}=\frac{1}{2}(0,69875+0,7)=0,699375, \mathrm{f}(0,699375)<0$;
Xét $\mathrm{x}_{5}=\frac{1}{2}(0,699375+0,7)=0,6996875, \mathrm{f}(0,6996875)<0$;
127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

$$
\begin{aligned}
& \text { Xét } \mathrm{x}_{6}=\frac{1}{2}(0,6996875+0,7)=0,6999375, \mathrm{f}(0,6999375)<0 ; \\
& \text { Xét } \mathrm{x}_{7}=\frac{1}{2}(0,6999375+0,7)=0,69996875, \mathrm{f}\left(\mathrm{x}_{7}\right)<0 ; \\
& \text { Xét } \mathrm{x}_{8}=\frac{1}{2}(0,69996875+0,7)=0,699984375, \mathrm{f}\left(\mathrm{x}_{8}\right)<0 . \\
& \alpha=0,69999 \pm 0,00001 .
\end{aligned}
$$

16. Không giảm tính tởng quát, có thể giả thiết $0 \leq \mathrm{x}^{\prime}<\mathrm{x}$ " và xét xem khi $\left|x^{\prime \prime}-x^{\prime}\right|<\delta$ có kéo theo $\left|f\left(x^{\prime \prime}\right)-f\left(x^{\prime}\right)\right|<\varepsilon$ với mọi $\varepsilon>0$ cho trước hay không?
Với hàm so $\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}$, ta có :

$$
\sqrt{x^{\prime \prime}}-\sqrt{x^{\prime}}=\frac{x^{\prime \prime}-x^{\prime}}{\sqrt{x^{\prime \prime}}+\sqrt{x^{\prime}}}<\frac{x^{\prime \prime}-x^{\prime}}{2 \sqrt{x^{\prime}}} \text { nếu } x^{\prime}>0 .
$$

Muốn $\sqrt{x^{\prime \prime}}-\sqrt{x^{\prime}}$ dương và bé thua ε; chỉ cần $x^{\prime \prime}-x^{\prime}<2 \varepsilon \sqrt{x^{\prime}}$, hay là nếu lấy $x^{\prime} \geq x_{0}>0$ với x_{0} có định thì chỉ cần $x^{\prime \prime}-x^{\prime}<2 \varepsilon \sqrt{x_{0}}$, do đó $\delta=2 \varepsilon \sqrt{x_{0}}$, do đó có sự liên tục đều trên $\left[\mathrm{x}_{\mathrm{o}},+\infty\right)$.
Ngoài ra, vì $\mathrm{f}(\mathrm{x})$ liên tục nên cũng liên tục đều trên đoạn [$0, \mathrm{x}_{\mathrm{o}}$] và do đó $\mathrm{f}(\mathrm{x})$ liên tục đều trên $[0,+\infty)$.
Với hàm só $\mathrm{g}(\mathrm{x})=\mathrm{x}^{2}$, xét hiệu :

$$
x^{\prime \prime 2}-x^{\prime 2}=\left(x^{\prime \prime}-x^{\prime}\right)\left(x^{\prime \prime}+x^{\prime}\right)>2 x^{\prime}\left(x^{\prime \prime}-x^{\prime}\right) .
$$

Khi đó, dã̃u là $x^{\prime \prime}-x^{\prime}<\delta$, với δ khá bé cũng không đảm bảo $x^{\prime \prime 2}-x^{\prime 2}<\varepsilon$ vì, chẳng hạn,

$$
x^{\prime \prime}-x^{\prime}=\frac{\delta}{2}, x^{\prime}>\frac{1}{\delta} \Rightarrow x^{\prime \prime 2}-x^{\prime 2}>1
$$

Vậy $\mathrm{g}(\mathrm{x})$ không thể liên tục đều trên $[0,+\infty)$.
127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

Cứi cùng, xét $\mathrm{h}(\mathrm{x})=\cos \mathrm{x}^{2}, \mathrm{~h}(\mathrm{x})$ không đơn điệu nên không thể lập luận như hai trường hợp trên được nhưng do $h(x)$ luôn có cực đại và cực tiểu liên tiếp nhau (tính chắt của hàm số $\cos ($.$)), có :$
$\cos x^{2}=1$ với $x^{2}=2 k \pi ; x=\sqrt{2 k \pi}, k \in N$ $\cos \mathrm{x}^{2}=-1$ với $\mathrm{x}^{2}=(2 \mathrm{k}+1) \pi ; \mathrm{x}=\sqrt{(2 \mathrm{k}+1) \pi}, \mathrm{k} \in \mathbf{N}$.
Bây giờ đặt : $\mathrm{x}^{\prime \prime}=\sqrt{2 \mathrm{k} \pi}, \mathrm{x}^{\prime}=\sqrt{(2 \mathrm{k}+1) \pi}$ thì
và

$$
\begin{aligned}
& x^{\prime \prime}-x^{\prime}<\frac{1}{\sqrt{2 k \pi}} \rightarrow 0 \text { khi } k \rightarrow \infty \\
& \left|h\left(x^{\prime \prime}\right)-h\left(x^{\prime}\right)\right|=2,
\end{aligned}
$$

và điều đó chứng tỏ rằng $h(x)$ không liên tục đểu trên $[0,+\infty)$.

Chuong 4

ĐẠO HÀM VÀ VI PHÂN CỦ̉A HÀM SỐ MỘT BIẾN SỐ

A. Đ Ề BÀI

1. Cho $f(x):=(x-1)(x-2)^{2}(x-3)^{3}$; tính $f^{\prime}(1), f^{\prime}(2), f^{\prime}(3)$?
2. Cho $f(x):=x+(x-1) \arcsin \sqrt{\frac{x}{x+1}}$, tính $f^{\prime}(1)$?
3. Tính đạo hàm các hàm só :
1) $y=x+\sqrt{x}+\sqrt[3]{x}$;
2) $y=\frac{1}{x}+\frac{1}{\sqrt{x}}+\frac{1}{\sqrt[3]{x}}$
3) $y=\sqrt[3]{x^{2}}-\frac{2}{\sqrt{x}}$;
4) $y=\sqrt[(m+n)]{(1-x)^{m}(1+x)^{n}}$
5) $y=\sqrt[3]{\frac{1+\mathrm{x}^{3}}{1-\mathrm{x}^{3}}}$;
6) $y=\sqrt{x+\sqrt{x+\sqrt{x}}}$
7) $y=\frac{\sin ^{2} x}{\sin x^{2}}$;
8) $y=\frac{1}{\cos ^{n} x}$
9) $y=\operatorname{tg} \frac{x}{2}-\operatorname{cotg} \frac{x}{2}$;
10) $y=x^{\frac{1}{x}}$
11) $y=\ln \left(x+\sqrt{1+x^{2}}\right)$;
12) $y=e^{x} \ln \sin x$
127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
13) $y=\log _{3}\left(x^{2}-\sin x\right)$;
14) $y=e^{\operatorname{arctg} x}$
15) $y=e^{x^{x}}$
4. Viết phương trình tiếp tuyến với đường cong :

$$
y=x^{3}-3 x^{2}-x+5
$$

tại điểm $\mathrm{A}(3,2)$.
5. Chứng minh rằng đoạn tiếp tuyến của đường hypebôn $x y=m$ gồm giữa các trục tọa độ bị tiếp điểm chia làm hai phần bằng nhau.
6. Tìm đạo hàm và vē đồ thị của hàm số và của đạo hàm các hàm số :

1) $y=|x|$;
2) $y=x|x|$;
3) $y=\ln |x|$.
7. Tìm đạo hàm các hàm số :
1) $y= \begin{cases}1-x, & \text { khi }-\infty<x<1 \\ (1-x)(2-x), & \text { khi } 1 \leq x \leq 2 \\ -(2-x), & \text { khi } 2<x<+\infty\end{cases}$
2) $y= \begin{cases}x^{2} e^{-x^{2}} & , \text { khi }|x| \leq 1 \\ \frac{1}{e}, & \text { khi }|x|>1\end{cases}$
8. Tính y nếu (với f là một hàm khả vi)
1) $y=f\left(x^{2}\right)$;
2) $y=f\left(\sin ^{2} x\right)+f\left(\cos ^{2} x\right)$;
3) $y=f\left(e^{x}\right) e^{f(x)}$.
9. Cho $f(x):=x(x-1)(x-2) \ldots(x-100)$. Tính $f^{\prime}(0)$?
10. Với điĉ̀u kiện nào thì hàm số

$$
f(x):=\left\{\begin{array}{cc}
x^{n} \sin \frac{1}{x}, & \text { khi } x \neq 0 \\
0, & \text { khi } x=0
\end{array}\right.
$$

1) liên tục tại $x=0$
2) khả vi tại $x=0$
3) có đạo hàm liên tục tại $x=0$.
127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
11. Chứng minh rằng hàm số $f(x):=|x-a| \varphi(x)$ trong đó $\varphi(x)$ là̀ một hàm số liên tục, $\varphi(\mathrm{a}) \neq 0$, không có đạo hàm tại điểm $\dot{x}=\mathrm{a}$.
12. Xét tính khả vi của các hàm số :
1) $y=\left|(x-1)(x-2)^{2}(x-3)^{3}\right|$;
2) $y=|\cos x|$.
13. Tìm đạo hàm trái $f_{-}^{\prime}(x)$ và đạo hàm phải $f_{+}(x)$ của các hàm số :
1) $f(x)=|x|$;
2) $f(x)=\sqrt{\sin x^{2}}$.
14. Tìm vi phân các hàm số :
1) $y=\frac{1}{x}$;
2) $y=\frac{1}{a} \operatorname{arctg} \frac{x}{a},(a \neq 0)$
3) $y=\frac{1}{2 a} \ln \left|\frac{\dot{x}-a}{x+a}\right|,(a \neq 0)$
4) $y=\ln \left|x+\sqrt{x^{2}+a}\right|$
5) $y=\arcsin \frac{x}{a},(a \neq 0)$.
15. Cho $u(x), v(x)$ là hai hàm số khả vi, chứng minh rằng
1) $\mathrm{d}(\mathrm{Cu})=\mathrm{Cdu}, \mathrm{C}$ là hằng só ;
2) $d(u+v)=d u+d v$
3) $d(u v)=v d u+u d v$;
4) $d\left(\frac{u}{v}\right)=\frac{v d u-u d v}{v^{2}}$.
16. Tìm
1) $d\left(x e^{x}\right)$;
2) $d \sqrt{a^{2}+x^{2}}$;
3) $d\left(\frac{x}{\sqrt{1-x^{2}}}\right)$;
4) $\operatorname{dln}\left(1-x^{2}\right)$.
17. Tìm
1) $\frac{d}{d\left(x^{3}\right)}\left(x^{3}-2 x^{6}-x^{9}\right)$;
2) $\frac{d}{d\left(x^{2}\right)}\left(\frac{\sin x}{x}\right)$;
3) $\frac{d(\sin x)}{d(\cos x)}$
127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
18. Dùng công thức số gia của hàm số khả vi, tìm giá trị xấp xỉ các biểu thức :
1) $\sqrt[3]{1,02}$;
2) $\sin 29^{\circ}$;
3) $\lg 11$;
4) $\operatorname{arctg} 1,05$.
19. Chứng minh công thức xấp xỉ

$$
\sqrt{a^{2}+x} \approx a+\frac{x}{2 a},(a>0)
$$

với $|x| \ll \mathrm{a}$ (hệ thức $\mathrm{A} \ll \mathrm{B}$ với $\mathrm{A}, \mathrm{B}>0$ kí hiẹ̀u A rất bé so với B). Dùng công thức trền tính các giá trị xấp xỉ của

1) $\sqrt{5}$;
2) $\sqrt{34}$;
3) $\sqrt{120}$.
20. Tìm $y^{\prime \prime}$, nếu
1) $y=x \sqrt{1+x^{2}}$;-
2) $y=\frac{x}{\sqrt{1-x^{2}}}$;
3) $y=e^{-x^{2}}$;
4) $y=\operatorname{lnf}(x)$.
21. Tìm $y^{\prime}{ }_{x}, y^{\prime \prime}{ }_{x x}$ của hàm số $y=f(x)$ cho dưới dạng tham só
1) $x=2 t-t^{2}, y=3 t-t^{3}$;
2) $x=a \cos t, y=a \operatorname{sint}$;
3) $x=a(t-\sin t), y=a(1-\cos t)$.
22. Tìm đạo hàm cấp cao các hàm só :
1) $y=\frac{x^{2}}{1-x}, y^{(8)}$?
2) $\mathrm{y}=\frac{1+\mathrm{x}}{\sqrt{1-\mathrm{x}}}, \mathrm{y}^{(100)}$?
3) $y=x^{2} e^{2 x}, y^{(20)}$?
4) $y=x^{2} \sin 2 x, y^{(50)}$?
23. Tìm $\mathrm{y}^{(\mathrm{n})}$ nếu
1) $y=\frac{1}{x(1-x)}$;
2) $y=\frac{1}{x^{2}-3 x+2}$;
3) $y=\frac{x}{\sqrt[3]{1+x}}$;
4) $y=e^{a x} \sin b x$.
127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
24. Dùng phương pháp quy nạp, chứng minh rằng

$$
\left(x^{n-1} e^{\frac{1}{x}}\right)^{(n)}=\frac{(-1)^{n}}{x^{n+1}} e^{\frac{1}{x}}
$$

25. Cho đa thức Legendre : $P_{m}(x):=\frac{1}{2^{m} m!}\left[\left(x^{2}-1\right)^{m}\right]^{(m)}$,
$\mathrm{m}=0,1,2, \ldots$ Chứng minh rằng $\mathrm{P}_{\mathrm{m}}(\mathrm{x})$ thoả phương trình

$$
\left(1-x^{2}\right) P_{m}^{\prime \prime}(x)-2 x P_{m}^{\prime}(x)+m(m+1) P_{m}(x)=0
$$

26. Cho da thức Tchebychev - Hermite

$$
H_{m}(x):=(-1)^{m} e^{x^{2}}\left(e^{-x^{2}}\right)^{(m)}, m=0,1,2, \ldots
$$

Chứng minh rằng

$$
\mathrm{H}_{\mathrm{m}}^{\prime \prime}(\mathrm{x})-2 \mathrm{xH}_{\mathrm{m}}^{\prime}(\mathrm{x})+2 \mathrm{mH}_{\mathrm{m}}(\mathrm{x})=0
$$

Tìm biểu thức hiện của $\mathrm{H}_{\mathrm{m}}(\mathrm{x})$.

B. LỜI GIẢI

1. $f^{\prime}(x)=(x-2)^{2}(x-3)^{3}+2(x-2) f_{1}(x)+3(x-3)^{2} f_{2}(x)$ trong dó $f_{1}(x)=(x-1)(x-3)^{3} ; f_{2}(x)=(x-1)(x-2)^{2}$.
Do đó $\quad f^{\prime}(1)=(1-2)^{2}(1-3)^{3}+0+0=-8$

$$
f^{\prime}(2)=0+0+0=0
$$

$$
\mathrm{f}^{\prime}(3)=0+0+0=0
$$

2.

$$
f^{\prime}(x)=1+\arcsin \sqrt{\frac{x}{x+1}}+(x-1) g(x)
$$

với

$$
g(x)=\left(\arcsin \sqrt{\frac{x}{x+1}}\right)^{\prime}
$$

Do đ6 : $\mathrm{f}^{\prime}(1)=1+\arcsin \frac{\sqrt{2}}{2}=1+\frac{\pi}{4}$.
127.0.0.1 do ${ }_{58}$ nnloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
3. 1) $y=x+\sqrt{x}+\sqrt[3]{x}=x+x^{\frac{1}{2}}+x^{\frac{1}{3}}$
$y^{+}=1+\frac{1}{2} x^{\frac{1}{2}-1}+\frac{1}{3} x^{\frac{1}{3}-1}=1+\frac{1}{2 \sqrt{x}}+\frac{1}{3 \sqrt[3]{x^{2}}}$.
2) $y=\frac{1}{x}+\frac{1}{\sqrt{x}}+\frac{1}{\sqrt[3]{x}}=x^{-1}+x^{\frac{1}{2}}+x^{-\frac{1}{3}}$

$$
\begin{aligned}
y^{\prime} & =(-1) x^{-1-1}+\left(-\frac{1}{2}\right) x^{-\frac{1}{2}-1}+\left(-\frac{1}{3}\right) x^{-\frac{1}{3} 1} \\
& =-\frac{1}{x^{2}}-\frac{1}{2 \sqrt{x^{3}}}-\frac{1}{3} \cdot \frac{1}{\sqrt[3]{x^{4}}}
\end{aligned}
$$

3) $y=\sqrt[3]{x^{2}}-\frac{2}{\sqrt{x}}=x^{\frac{2}{3}}-2 x^{-\frac{1}{2}}$
$y^{\prime}=\frac{2}{3} x^{\frac{2}{3}-1}+(-2)\left(-\frac{1}{2}\right) x^{-\frac{1}{2}-1}=\frac{2}{3 \sqrt[3]{x}}+\frac{1}{\sqrt{x^{3}}}$.
4) $\dot{y}=\sqrt[m+n]{(1-x)^{m}(1+x)^{n}}=(1-x)^{\frac{m}{m+n}}(1+x)^{\frac{n}{m+n}}$.
$\ln y=\frac{1}{m+n}[m \ln (1-x)+n \ln (1+x)]$.
Để ý rằng $(\ln (1+x))^{\prime}=\frac{1}{1+x} ;(\ln (1-x))^{\prime}=-\frac{1}{1-x}$.
Do đó lấy đạo hàm hai vế biểu thức lny, được :

$$
\frac{y^{+}}{y}=\frac{1}{m+n}\left(\frac{n}{1+x}-\frac{m}{1-x}\right)=\frac{1}{(m+n)} \cdot \frac{(n-m)-(n+m) x}{(1-x)(1+x)} .
$$

Suy ra:

$$
y^{\prime}=y \cdot \frac{1}{m+n} \cdot \frac{(n-m)-(n+m) x}{(1-x)(1+x)}=
$$

127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

$$
=\frac{(n-m)-(n+m) x}{m+n}(1-x)^{\frac{m}{m+n}-1}(1+x)^{\frac{n}{m+n}-1}
$$

tức là

$$
y^{\prime}=\frac{(n-m)-(n+m) x}{(m+n) \sqrt[(m+n)]{(1-x)^{n}(1+x)^{m}}}
$$

5) $y=\sqrt[3]{\frac{1+\mathrm{x}^{3}}{1-\mathrm{x}^{3}}}=\left(\frac{1+\mathrm{x}^{3}}{1-\mathrm{x}^{3}}\right)^{\frac{1}{3}}$.
$\ln y=\frac{1}{3}\left[\ln \left(1+x^{3}\right)-\ln \left(1-x^{3}\right)\right]$.
$\frac{y^{\prime}}{y}=\frac{1}{3}\left[\frac{3 x^{2}}{1+x^{3}}+\frac{3 x^{2}}{1-x^{3}}\right]=x^{2}\left[\frac{1}{1+x^{3}}+\frac{1}{1-x^{3}}\right]$.
$y^{\prime}=\frac{2 x^{2}}{1-x^{6}} \sqrt[3]{\frac{1+x^{3}}{1-x^{3}}},|x| \neq 1$.
6) $y=\sqrt{x+\sqrt{x+\sqrt{x}}}=u^{\frac{1}{2}} ; u=x+\sqrt{v}$;

$$
\begin{aligned}
v & =x+\sqrt{x} \\
y^{\prime} & =\frac{1}{2} u^{\frac{1}{2}-1} u^{\prime} ; u^{\prime}=1+\frac{1}{2 \sqrt{v}} \cdot v^{\prime} ; v^{\prime}=1+\frac{1}{2 \sqrt{x}} \\
y^{\prime} & =\frac{1}{2 \sqrt{u}}\left(1+\frac{1}{2 \sqrt{v}}\right)\left(1+\frac{1}{2 \sqrt{x}}\right)= \\
& =\frac{1}{2 \sqrt{x+\sqrt{x+\sqrt{x}}}}\left(1+\frac{1}{2 \sqrt{x+\sqrt{x}}}\right)\left(1+\frac{1}{2 \sqrt{x}}\right)
\end{aligned}
$$

Cuói cùng :

$$
y^{\prime}=\frac{1+2 \sqrt{x}+2 \sqrt{x+\sqrt{x}}+4 \sqrt{x} \sqrt{x+\sqrt{x}}}{8 \sqrt{x} \sqrt{x+\sqrt{x} \sqrt{x+\sqrt{x+\sqrt{x}}}}}, x>0
$$

127.0.80 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
7) $y^{\prime}=\frac{\left(\sin ^{2} x\right)^{\prime}\left(\sin x^{2}\right)-\left(\sin ^{2} x\right)\left(\sin x^{2}\right)^{\prime}}{\left(\sin x^{2}\right)^{2}}$

Ta có $\quad\left(\sin ^{2} x\right)^{\prime}=2 \sin x \cos x$,

$$
\left(\sin x^{2}\right)^{\prime}=2 x \cos x^{2}
$$

Cuối cùng :

$$
y^{\prime}=\frac{2 \sin x\left(\cos x \sin x^{2}-x \sin x \cos x^{2}\right)}{\sin ^{2} x^{2}}
$$

8) $y=\frac{1}{\cos ^{n} x}=(\cos x)^{-n}, y^{\prime}=-n(\cos x)^{-n-1}(-\sin x)$

$$
y^{\prime}=\frac{n \sin x}{\cos ^{n+1} x}
$$

9) $y=\operatorname{tg} \frac{x}{2}-\operatorname{cotg} \frac{x}{2}, y^{\prime}=\frac{1}{2} \cdot \frac{1}{\cos ^{2} \frac{x}{2}}+\frac{1}{2} \frac{1}{\sin ^{2} \frac{x}{2}}$

$$
y^{\prime}=\frac{1}{2} \cdot \frac{1}{\sin ^{2} \frac{x}{2} \cos ^{2} \frac{x}{2}}=\frac{2}{\sin ^{2} x}
$$

10) Đẻ ý rầng hàm só $y=x^{\frac{1}{x}}$ không thuộc dạng a^{x} (vì x không phải là hằng số), cũng không thuộc dạng x^{α} (vì $\frac{1}{x}$ không phải hằng sớ), do đó, muốn tính y' nhất thiết phải lấy lôga của hai vế và khi đó có :

$$
\ln y=\frac{1}{x} \ln x
$$

và

$$
\frac{y^{\prime}}{y}=-\frac{1}{x^{2}} \ln x+\frac{1}{x} \cdot \frac{1}{x}=\frac{1}{x^{2}}(1-\ln x) . \text { Do đó : }
$$

127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

$$
y^{\prime}=\frac{y}{x^{2}}(1-\ln x)=\frac{x^{\frac{1}{x}}}{x^{2}}(1-\ln x)
$$

11) $y=\ln \left(x+\sqrt{1+x^{2}}\right)=\ln u, u=x+\sqrt{v} ; v=1+x^{2}$.

$$
y^{\prime}=\frac{1}{u} \cdot u^{\prime} ; u^{\prime}=1+\frac{1}{2 \sqrt{v}} \cdot \mathbf{v}^{\prime} ; \mathbf{v}^{\prime}=2 x
$$

Vậy:

$$
\begin{aligned}
y^{\prime} & =\frac{1}{x+\sqrt{1+x^{2}}}\left(1+\frac{1}{2 \sqrt{1+x^{2}}} \cdot 2 x\right)= \\
& =\frac{1}{x+\sqrt{1+x^{2}}}\left(1+\frac{x}{\sqrt{1+x^{2}}}\right)=\frac{1}{\sqrt{1+x^{2}}}
\end{aligned}
$$

12) $y=e^{x} \ln \sin x, y^{\prime}=e^{x} \ln \sin x+e^{x}(\ln \sin x)^{\prime}$

$$
(\ln \sin x)^{\prime}=\frac{\cos x}{\sin x}
$$

Do đó :

$$
y^{\prime}=e^{x}(\ln \sin x+\cot g x), \sin x>0
$$

13) $y=\log _{3}\left(x^{2}-\sin x\right)=\frac{\ln \left(x^{2}-\sin x\right)}{\ln 3}=\frac{1}{\ln 3} \ln u$;

$$
\begin{aligned}
u & =x^{2}-\sin x \\
y^{\prime} & =\frac{1}{\ln 3} \cdot \frac{1}{u} \cdot u^{\prime} ; u^{\prime}=2 x-\cos x
\end{aligned}
$$

$$
=\frac{1}{\ln 3} \frac{1}{x^{2}-\sin x} \cdot(2 x-\cos x)=\frac{2 x-\cos x}{(\ln 3)\left(x^{2}-\sin x\right)}
$$

$$
x^{2}-\sin x>0
$$

14) $y=e^{\operatorname{arctg} x}=e^{u}, u=\operatorname{arctg} x$

$$
y^{\prime}=e^{u} \cdot u^{\prime}, u^{\prime}=\frac{1}{1+x^{2}}
$$

127.0.0. 1 d downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

$$
y^{\prime}=\frac{1}{1+x^{2}} e^{\operatorname{arctg} x}
$$

15) $y=e^{x^{x}}=e^{u}, u=x^{x}$.

$$
\mathrm{y}^{\prime}=\mathrm{e}^{\mathrm{u}} \cdot \mathrm{u}^{\prime}
$$

Để tính u' ta phải lấy lôga biểu thức của u:

$$
\ln u=x \ln x
$$

Đạo hàm hai vế, dược :

$$
\frac{\mathrm{u}^{\prime}}{\mathrm{u}}=\ln \mathrm{x}+\mathrm{x} \cdot \frac{1}{\mathrm{x}}=1+\ln \mathrm{x} .
$$

Suy ra:

$$
u^{\prime}=x^{x}(1+\ln x) .
$$

Thế giá trị u’ vào biểu thức của y^{\prime}, được :

$$
y^{\prime}=e^{x^{x}}(1+\ln x) x^{x}
$$

4. Phương trình tiếp tuyến tại điểm A có dạng :

$$
y-y_{A}=y^{\prime}\left(x_{A}\right)\left(x-x_{A}\right)
$$

Ơ đây có $: y=x^{3}-3 x^{2}-x+5$, suy ra :

$$
y^{\prime}=3 x^{2}-6 x-1, y^{\prime}\left(x_{A}\right)=3.3^{2}-6.3-1=8
$$

Vậy phương trình tiếp tuyến tại $\mathrm{A}(3 ; 2)$ là

$$
y-2=8(x-3) \text { hay } y=8 x-22
$$

5. Gọi $l(\alpha, \beta)$ là tiếp điểm của đoạn tiếp tuyến của đường hypebôn $x y=m$; tiếp tuyến này cắt trục hoành tại A và trục tung tại B . Cần phải chứng minh rằng $\mathrm{IA}=\mathrm{IB}$ (xem hình 9).
Thật vậy, phương trình tiếp tuyến tại tiếp điểm I là

$$
y-\beta=y^{\prime}(\alpha)(x-\alpha)
$$

Hinh 9

Suy ra: $x_{B}=0$ và $y_{B}=\beta-\alpha y^{\prime}(\alpha)$
và $\quad \mathrm{y}_{\mathrm{A}}=0$ và $\mathrm{x}_{\mathrm{A}}=\alpha-\frac{\beta}{\mathrm{y}^{\prime}(\alpha)}$.
Mặt khác, phương trình hypebôn $x y=m$ có thể viết $y=\frac{m}{x}$, suy ra
$y^{\prime}=-\frac{\mathrm{m}}{\mathrm{x}^{2}}$, nghīa là : $\mathrm{y}^{\prime}(\alpha)=-\frac{\mathrm{m}}{\alpha^{2}}$ và $\beta=\frac{\mathrm{m}}{\alpha}$.
Thế giá trị của β và $y^{\prime}(\alpha)$ vào các biểu thức của x_{A} và y_{B} được :

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{A}}=\alpha-\frac{\mathrm{m}}{\alpha}\left(-\frac{\alpha^{2}}{\mathrm{~m}}\right)=2 \alpha \\
& \mathrm{y}_{\mathrm{B}}=\beta-\alpha\left(-\frac{\mathrm{m}}{\alpha^{2}}\right)=\frac{\mathrm{m}}{\alpha}+\frac{\mathrm{m}}{\alpha}=\frac{2 \mathrm{~m}}{\alpha}=2 \beta
\end{aligned}
$$

Suy ra:

$$
\begin{aligned}
& \frac{x_{A}+x_{B}}{2}=\frac{2 \alpha+0}{2}=\alpha \\
& \frac{y_{A}+y_{B}}{2}=\frac{0+2 \beta}{2}=\beta
\end{aligned}
$$

Ta tha̛y rằng trung bình cộng các toạ độ của A và B trùng với tọa độ của $\mathrm{I}(\alpha, \beta)$ và điều đó chứng tỏ rằng I là trung điểm của AB : $\mathrm{IA}=\mathrm{IB}$.
6. 1) $y=|x|=\left\{\begin{array}{r}x, \\ -x \geq 0 \\ -x,\end{array}\right.$, suy ra $y^{\prime}=\left\{\begin{aligned} 1, & x>0 \\ -1, & x<0\end{aligned}\right.$

Tai $x=0$ thì $y^{\prime}-(0)=-1$; và $y_{+}^{\prime}(0)=1$, do đó tại $x=0$ hàm só không có đạo hàm và : $y^{\prime}=\operatorname{sgn}(x) ; x \neq 0$.
2) $y=x|x|=\left\{\begin{array}{l}x^{2}, x \geq 0 \\ -x^{2}, x<0\end{array}\right.$, suy ra: $y^{\prime}=\left\{\begin{array}{l}2 x, x \geq 0 \\ -2 x, x<0\end{array}\right.$ nghĩa là

$$
y^{\prime}=2|x|
$$

3) $y=\ln |x|=\left\{\begin{array}{ll}\ln x, & x>0 \\ \ln (-x), & x<0\end{array}\right.$ suy ra $y^{\prime}=\frac{1}{x}, \quad x \neq 0$.

Dưới đây cho đồ thị các hàm số và đạo hàm các hàm só đã cho trong các bài tập trên.

Hinh 10
7. 1) $y=\left\{\begin{array}{lr}1-x, & x<1 \\ (1-x)(2-x), & 1 \leq x \leq 2, \\ -(2-x), & x>2\end{array}\right.$
$y^{\prime}=\left\{\begin{array}{lr}-1, & x<1 \\ 2 x-3, & 1 \leq x \leq 2 \\ 1, & x>2\end{array}\right.$
2) $y=\left\{\begin{array}{ll}x^{2} e^{-x^{2}} & ,|x| \leq 1 \\ \frac{1}{e}, & |x|>1\end{array}, y^{\prime}=\left\{\begin{array}{ll}2 x^{-x^{2}}\left(1-x^{2}\right), & |x| \leq 1 \\ 0, & |x|>1\end{array}\right.\right.$.
8. 1) $y^{\prime}=2 x f^{\prime}\left(x^{2}\right)$.
2) $y^{\prime}=2 \sin x \cos x f^{\prime}\left(\sin ^{2} x\right)-2 \sin x \cos x f^{\prime}\left(\cos ^{2} x\right)$

$$
=2 \sin x \cos x\left(f^{\prime}\left(\sin ^{2} x\right)-f^{\prime}\left(\cos ^{2} x\right)\right)
$$

3) $y^{\prime}=e^{x} f^{\prime}\left(e^{x}\right) e^{f(x)}+f\left(e^{x}\right) e^{f(x)} f^{\prime}(x)$
127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

-

$$
y^{\prime}=e^{f(x)}\left(e^{x} f^{\prime}\left(e^{x}\right)+f^{\prime}(x) f\left(e^{x}\right)\right)
$$

9. $f^{\prime}(x)=(x-1)(x-2) \ldots(x-100)+g(x)$
vớ $g(x)=x(x-2) \ldots(x-100)+\ldots$ Suy ra

$$
f^{\prime}(0)=(-1)(-2) \ldots(-100)+g(0)
$$

Vì $g(0)=0$ nên suy ra :

$$
f^{\prime}(0)=100!
$$

10. Xét $f(x)= \begin{cases}x^{n} \sin \frac{1}{x}, & x \neq 0 \\ 0, & x=0\end{cases}$
1) Rõ ràng $f(x)$ liên tục với mọi $x \neq 0$; tại $x=0$ phải có $\lim _{x \rightarrow 0} f(x)=0$, nghĩa là :

$$
\lim _{x \rightarrow 0} x^{n} \sin \frac{1}{x}=0
$$

Vi $\left|\sin \frac{1}{x}\right| \leq 1$ nên $\lim _{x \rightarrow 0} x^{n} \sin \frac{1}{x}=0$ khi $\lim _{x \rightarrow 0} x^{n}=0$ nghīa là khi $n>0$ thì $\lim _{x \rightarrow 0} x^{n} \sin \frac{1}{x}=0$ và $f(x)$ liên tục tại $x=0$.
2) Dể xét tính khả vi của $f(x)$ tại $x=0$ ta lập số gia

$$
\begin{gathered}
\Delta f=f(0+\Delta x)-f(0)=(\Delta x)^{n} \sin \frac{1}{\Delta x}-0 . \text { Suy ra } \\
\lim _{\Delta x \rightarrow 0} \frac{\Delta f}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{(\Delta x)^{n} \sin \frac{1}{\Delta x}}{\Delta x}=\lim _{\Delta x \rightarrow 0}(\Delta x)^{n-1} \sin \frac{1}{\Delta x}
\end{gathered}
$$

Vì $\left|\sin \frac{1}{\Delta x}\right| \leq 1$ nên :

$$
\lim _{\Delta x \rightarrow 0} \frac{\Delta f}{\Delta x}=\lim _{\Delta x \rightarrow 0}(\Delta x)^{n-1}=0 \text { khi } n-1>0
$$

127.0.0.1_downloaded 60384.pdf at Tủe Jul 31 08:30:34 ICT $\underset{\text { sпожнноссстав }}{2012}$

Mặt khác theo giả thiết $\mathrm{f}(0)=0$ nên, với $\mathrm{n}-1>0$ tức là $\mathrm{n}>1$ hàm sô $f(x)$ khả vi tại $x=0$.
3) Với $x \neq 0$, ta có :

$$
\begin{aligned}
f^{\prime}(x) & =n x^{n-1} \sin \frac{1}{x}-\frac{x^{n}}{x^{2}} \cos \frac{1}{x} \\
& =n x^{n-1} \sin \frac{1}{x}-x^{n-2} \cos \frac{1}{x} \\
& =x^{n-2}\left(n x \sin \frac{1}{x}-\cos \frac{1}{x}\right)
\end{aligned}
$$

Theo cấu 2 , ta có $f(x)$ khả vi tại $x=0$ và $f^{\prime}(0)=0$ nên để $f^{\prime}(x)$ liên tục tại $x=0$, phải có

$$
\lim _{x \rightarrow 0} f^{\prime}(x)=\lim _{x \rightarrow 0} x^{n-2}\left(n x \sin \frac{1}{x}-\cos \frac{1}{x}\right)=0
$$

và điều đó chỉ xảy ra khi $n-2>0 \Rightarrow n>2$. Nói khác đi khi $n>2$ thì $f(x)$ có đạo hàm liên tục tại $x=0$.
11. $f(x)=|x-a| \varphi(x)=\left\{\begin{array}{ll}(x-a) \varphi(x), & x \geq a \\ (a-x) \varphi(x), & x<a\end{array}\right.$.

Suy ra
với $x \neq a$, có $f^{\prime}(x)=\left\{\begin{array}{ll}\varphi(x)+(x-a) \varphi^{\prime}(x), & x>a \\ -\varphi(x)+(a-x) \varphi^{\prime}(x), & x<a\end{array}\right.$.
Từ đó :

$$
f_{+}^{\prime}(a)=\varphi(a) ; f_{-}^{\prime}(a)=-\varphi(a)
$$

Theo giả thiét $\varphi(\mathrm{a}) \neq 0$, do đó $\mathrm{f}_{+}(\mathrm{a}) \neq \mathrm{f}_{-}(\mathrm{a})$, hàm $\mathrm{f}(\mathrm{x})$ không có đạo hàm tại $\mathrm{x}=\mathrm{a}$, do đó không khả vi tại $\mathrm{x}=\mathrm{a}$.
12. 1) $y=\left|(x-1)(x-2)^{2}(x-3)^{3}\right|=\left\{\begin{array}{l}(x-1)(x-3)^{3}(x-2)^{2}, \quad(x-1)(x-3) \geq 0 \\ -(x-1)(x-3)^{3}(x-2)^{2},(x-1)(x-3)<0\end{array}\right.$

Vì $(x-1)(x-3) \geq 0$ khi $x \leq 1$ hoạac $x \geq 3$,

$$
(x-1)(x-3)<0 \text { khi } 1<x<3
$$

Suy ra:
Với $x<1$ hoặc $x>3$:

$$
y^{\prime}=(x-3)^{3}(x-2)^{2}+3(x-3)^{2}(x-1)(x-2)^{2}+2(x-2)(x-1)(x-3)^{3}
$$

Vơi $1<\mathrm{x}<3$:
$y^{\prime}=-\left[(x-3)^{3}(x-2)^{2}+3(x-3)^{2}(x-1)(x-2)^{2}+2(x-2)(x-3)^{3}\right]$.
Suy ra: $y_{+}^{\prime}(3)=y^{\prime}-(3)=0 \Rightarrow$ hàm só có đạo hàm và đạo hàm bằng 0 tại $x=3$.

Tại $x=1$ có :

$$
\begin{aligned}
& y_{+}^{\prime}(1)=-(1-3)^{3}(1-2)^{2}=8 \\
& y^{\prime}-(1)=(1-3)^{3}(1-2)^{2}=-8
\end{aligned}
$$

Vì $y_{+}^{+}(1) \neq y_{-}^{\prime}(1)$ nên y không có đạo hàm tại $x=1$, do đó không khả vi tại $\mathrm{x}=1$.
2) $y=|\cos x|=\left\{\begin{array}{l}\cos x, \cos x \geq 0 \\ -\cos x, \cos x<0\end{array}\right.$.

Như thế y có đạo hàm tại mọi x sao cho $\cos x \neq 0$ và $y^{\prime}=-\sin x$ nếu $\cos x>0, y^{\prime}=\sin x$ nếu $\cos x<0$. Tại những giá trị x sao cho $\cos x=0$, nghĩa là tại $x=(2 k+1) \frac{\pi}{2}$ thì $\sin x=\sin (2 k+1) \frac{\pi}{2}= \pm 1$ phụ thuộc k chẵn hay lẻ, do đó :

$$
y^{\prime}+\left((2 k+1) \frac{\pi}{2}\right) \neq y^{\prime}-\left((2 k+1) \frac{\pi}{2}\right) .
$$

Vậy hàm só không khả vi tại $x=(2 k+1) \frac{\pi}{2}, k \in Z$.
13. 1) Từ bài 6.1 suy ra

$$
\begin{aligned}
& \mathbf{f}_{+}^{\prime}(x)=f^{\prime}-(x), x \neq 0 ; f^{\prime}(x)=\operatorname{sgn}(x), x \neq 0 . \\
& {f_{+}}_{+}(0)=1 ; f_{-}^{\prime}(0)=-1
\end{aligned}
$$

2) Hàm số $y=\sqrt{\sin x^{2}}$ xác định với mọi x thoả :

$$
\sqrt{2 k \pi} \leq|x| \leq \sqrt{(2 k+1) \pi}, k \in \mathbf{N}
$$

Tuy nhiên khi $x^{2}=2 k \pi$ hoăc $x^{2}=(2 k+1) \pi$ thì $\sin x^{2}=0$, do đó: Với $\sqrt{2 \mathrm{k} \pi}<|\mathrm{x}|<\sqrt{(2 \mathrm{k}+1) \pi}, \mathrm{k} \in \mathbf{N}$ thì :

$$
f^{\prime}(x)=f_{+}^{\prime}(x)=\frac{x \cos x^{2}}{\sqrt{\sin x^{2}}} .
$$

Khi $x \rightarrow 0$ thì $\sin x^{2}-x^{2}$ và $\sqrt{\sin x^{2}}-|x|$.
Do đó :
Với $x=0$ thì : $\mathrm{f}^{\prime}-(0)=-1 ; \mathrm{f}_{+}(0)=1$.
Cuới cùng, với $x= \pm \sqrt{2 k \pi}$ hoạ̣c $x= \pm \sqrt{(2 k+1) \pi}$, có

$$
\begin{aligned}
& f^{\prime}{ }_{ \pm}(\sqrt{2 k \pi})= \pm \infty, k \in N^{+} \\
& f^{\prime}{ }_{ \pm}(\sqrt{(2 k+1) \pi})= \pm \infty, k \in N^{+} .
\end{aligned}
$$

14. 15) $d y=d\left(\frac{1}{x}\right)=\left(\frac{1}{x}\right)^{\prime} d x=-\frac{1}{x^{2}} d x$.
2) $d y=d\left(\frac{1}{a} \operatorname{arctg} \frac{x}{a}\right)=\left(\frac{1}{a} \operatorname{arctg} \frac{x}{a}\right)^{\prime} d x=\frac{d x}{a^{2}+x^{2}}, a \neq 0$.
3) $d y=d\left(\frac{1}{2 a} \ln \left|\frac{x-a}{x+a}\right|\right)=\left(\frac{1}{2 a} \ln \left|\frac{x-a}{x+a}\right|\right)^{\prime} d x=\frac{d x}{x^{2}-a^{2}}, a \neq 0$
4) $d y=d\left(\ln \left|x+\sqrt{x^{2}+a}\right|\right)=\left(\ln \left|x+\sqrt{x^{2}+a}\right|\right)^{\prime} d x=\frac{d x}{\sqrt{x^{2}+a}}$
5) $d y=d\left(\arcsin \frac{x}{a}\right)=\left(\arcsin \frac{x}{a}\right)^{\prime} d x=\frac{d x}{\sqrt{a^{2}-x^{2}}}(\operatorname{sgn} a), a \neq 0$.
15. 16) $d(C u)=(C u)^{\prime} d x=C u^{\prime} d x=C d u$.
2) $d(u+v)=(u+v)^{\prime} d x=u^{\prime} d x+v^{\prime} d x=d u+d v$.
3) $d(u v)=(u v)^{\prime} d x=u{ }^{\prime} v d x+u v^{\prime} d x=v d u+u d v$.
4) $d\left(\frac{u}{v}\right)=\left(\frac{u}{v}\right)^{\prime} d x=\frac{u^{\prime} v-u v^{\prime}}{v^{2}} d x=\frac{v u u^{\prime} d x-u v^{\prime} d x}{v^{2}}=\frac{v d u-u d v}{v^{2}}$.
16. 17) $d\left(x e^{x}\right)=\left(x e^{x}\right)^{\prime} d x=\left(e^{x}+x e^{x}\right) d x=e^{x}(1+x) d x$.
2) $d\left(\sqrt{a^{2}+x^{2}}\right)=\left(\sqrt{a^{2}+x^{2}}\right)^{\prime} d x=\frac{x d x}{\sqrt{a^{2}+x^{2}}}$.
3) $\mathrm{d}\left(\frac{\mathrm{x}}{\sqrt{1-\mathrm{x}^{2}}}\right)=\left(\frac{\mathrm{x}}{\sqrt{1-\mathrm{x}^{2}}}\right)^{\prime} \mathrm{dx}=\frac{\mathrm{dx}}{\left(1-\mathrm{x}^{2}\right)^{\frac{3}{2}}},|\mathrm{x}|<1$.
4) $d\left(\ln \left(1-x^{2}\right)\right)=\left(\ln \left(1-x^{2}\right)\right)^{\prime} d x=-\frac{2 x}{1-x^{2}} d x,|x|<1$.
17. 18) $d\left(x^{3}-2 x^{6}-x^{9}\right)=\left(3 x^{2}-12 x^{5}-9 x^{8}\right) d x$,

$$
d\left(x^{3}\right)=3 x^{2} d x
$$

$$
\frac{d}{d\left(x^{3}\right)}\left(x^{3}-2 x^{6}-x^{9}\right)=\frac{\left(3 x^{2}-12 x^{5}-9 x^{8}\right) d x}{3 x^{2} d x}=1-4 x^{3}-3 x^{6}
$$

2) $d\left(\frac{\sin x}{x}\right)=\frac{x \cos x-\sin x}{x^{2}} d x, d\left(x^{2}\right)=2 x d x$,

$$
\frac{d}{d\left(x^{2}\right)}\left(\frac{\sin x}{x}\right)=\frac{1}{2 x^{3}}(x \cos x-\sin x)
$$

3) $\frac{d(\sin x)}{d(\cos x)}=\frac{\cos x d x}{-\sin x d x}=-\operatorname{cotg} x, x \neq k \pi, k \in Z$.
18. Nhắc lại công thức tính xấp xỉ:

$$
f\left(x_{0}+\Delta x\right) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \Delta x .
$$

127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

Muốn dùng công thức xấp xỉ phải chọ̣n được hàm số $\mathrm{f}(\mathrm{x})$; chọn x_{o}, chọn $\Delta \mathrm{x}$.

1) Chọn $f(x)=\sqrt[3]{x}=x^{\frac{1}{3}} ; x_{0}=1 ; \Delta x=0,02$. Khi đó :

$$
\sqrt[3]{1,02}=\sqrt[3]{1+0,02} \approx \sqrt[3]{1}=\frac{1}{3 \sqrt[3]{x_{0}^{2}}} \cdot \Delta x=1+\frac{0,02}{3 \cdot 1} \approx 1,007
$$

theo bảng tính thì $\sqrt[3]{1,02} \approx 1,0066$.
2) Chọn $f(x)=\sin x ; x_{0}=\frac{\pi}{6}, \Delta x=-\frac{\pi}{180} \approx-\frac{3,1416}{180}$

$$
\begin{aligned}
\sin 29^{\circ} & =\sin \left(30^{\circ}-1^{\circ}\right)=\sin \left(\frac{\pi}{6}-\frac{3,1416}{180}\right)= \\
& \approx \sin \frac{\pi}{6}+\left(\cos \frac{\pi}{6}\right)\left(-\frac{3,1416}{180}\right)= \\
& =\frac{1}{2}+\frac{\sqrt{3}}{2}\left(-\frac{3,1416}{180}\right) \approx 0,4849
\end{aligned}
$$

theo bảng tính thì $\sin 29^{\circ} \approx 0,4848$.
3) Chọn $f(x)=\lg x ; x_{o}=10 ; \Delta x=1$. Khi đó

$$
\lg 11=\lg (10+1) \approx \lg 10+\frac{1}{10 \cdot \ln 10}=1+\frac{1}{10 \cdot \ln 10} .
$$

Theo công thức trang 81 (sách đā dẫn) :

$$
\ln 10=2,302585
$$

Do đó :

$$
\lg 11 \approx 1+\frac{1}{10 \cdot 2,302585} \approx 1,043 ;
$$

theo bảng thì $\lg 11 \approx 1,041$.
4) Chọn $f(x)=\operatorname{arctg} x ; x_{0}=1 ; \Delta x=0,05$.

$$
\begin{aligned}
& \qquad \begin{aligned}
\operatorname{arctg}(1,05) & =\operatorname{arctg}(1+0,05) \\
& \approx \operatorname{arctg} 1+\frac{1}{1+1^{2}} 0,05=\frac{\pi}{4}+\frac{0,05}{2} \\
\text { nghì là } & \operatorname{arctg}(1,05) \approx 0,8104 \approx 46^{\circ} 26^{\prime} ; \\
\text { theo bảng thì } \quad & \operatorname{arctg} 1,05 \approx 46^{\circ} 24^{\prime} .
\end{aligned}
\end{aligned}
$$

nghia là
19. Xét hàm só $f(x)=\sqrt{a^{2}+x} ;|x| \ll a, a>0$

Chọn $\mathrm{x}_{\mathrm{o}}=0 ; \Delta \mathrm{x}=\mathrm{x}-\mathrm{x}_{\mathrm{o}}=\mathrm{x}-0=\mathrm{x}$.
Dùng công thức xấp xỉ :
ta được :

$$
\mathrm{f}\left(\mathrm{x}_{\mathrm{o}}+\Delta \mathrm{x}\right) \approx \mathrm{f}\left(\mathrm{x}_{\mathrm{o}}\right)+\mathrm{f}^{\prime}\left(\mathrm{x}_{\mathrm{o}}\right) \Delta \mathrm{x}
$$

$$
\begin{aligned}
& \sqrt{a^{2}+x} \approx \sqrt{a^{2}+0}+\frac{1}{2 \sqrt{a^{2}+0}} \cdot x \\
& \sqrt{a^{2}+x} \approx a+\frac{x}{2 a}, a>0
\end{aligned}
$$

Dùng công thức xấp xỉ này ta được :

1) $\sqrt{5}=\sqrt{2^{2}+1} \approx 2+\frac{1}{2.2}=2,25$;
theo bảng thì $\sqrt{5} \approx 2,24$.
2) $\sqrt{34}=\sqrt{36+(-2)}=\sqrt{6^{2}+(-2)} \approx 6-\frac{2}{2.6} \approx 5,833$;
tính theo bảng số thì $\sqrt{34} \approx 5,831$.
3) $\sqrt{120}=\sqrt{121+(-1)}=\sqrt{11^{2}+(-1)} \approx 11-\frac{1}{22} \approx 10,9545$;
tính theo bảng só thì $\sqrt{120} \approx 10,9546$.
20. 21) $y=x \sqrt{1+x^{2}}, y^{\prime}=\frac{1+2 x^{2}}{\sqrt{1+x^{2}}}, y^{\prime \prime}=\frac{x\left(3+2 x^{2}\right)}{\left(1+x^{2}\right)^{\frac{3}{2}}}$.
2) $y=\frac{x}{\sqrt{1-x^{2}}}, y^{\prime}=\frac{1}{\left(1-x^{2}\right)^{\frac{3}{2}}}, y^{\prime \prime}=\frac{3 x}{\left(1-x^{2}\right)^{\frac{5}{2}}},|x|<1$.
127.0.0.12downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
3) $y=e^{-x^{2}}, y^{+}=-2 x e^{-x^{2}}, y^{\prime \prime}=2 e^{-x^{2}}\left(2 x^{2}-1\right)$.
4) $y=\ln f(x), y^{\prime}=\frac{f^{\prime}(x)}{f(x)}, y^{\prime \prime}=\frac{f^{\prime \prime}(x) f(x)-\left(f^{\prime}(x)\right)^{2}}{f^{2}(x)}, f(x)>0$.
21. 22) $\mathrm{dx}=(2-2 \mathrm{t}) \mathrm{dt}=2(1-\mathrm{t}) \mathrm{dt}$

$$
\begin{gathered}
d y=\left(3-3 t^{2}\right) d t=3\left(1-t^{2}\right) d t \\
y_{x}^{\prime}=\frac{d y}{d x}=\frac{3\left(1-t^{2}\right) d t}{2(1-t) d t}=\frac{3}{2}(1+t) \\
y_{x x}^{\prime \prime}=\frac{d^{2} y}{d x^{2}}=\frac{3}{2}(1+t)_{t}^{\prime} \cdot t_{x}^{\prime}=\frac{3}{2} t_{x}^{\prime}
\end{gathered}
$$

Vì $\mathrm{dx}=2(\mathrm{l}-\mathrm{t}) \mathrm{dt} \Rightarrow \mathrm{t}_{\mathrm{x}}^{\prime}=\frac{\mathrm{dt}}{\mathrm{dx}}=\frac{1}{2(1-\mathrm{t})}$.

$$
\text { Vậy } y^{\prime \prime}{ }_{x x}=\frac{3}{2} \cdot \frac{1}{2(1-t)}=\frac{3}{4(1-t)} ; t \neq 1 \text {. }
$$

2) $d x=-a \sin t d t, t_{x}^{\prime}=-\frac{1}{a \sin t}$;
$\mathrm{dy}=\operatorname{acostdt}, \mathrm{y}^{\prime}{ }_{\mathrm{x}}=-\operatorname{cotg} \mathrm{t}$.

$$
y^{\prime \prime}{ }_{x x}=-(\operatorname{cotg} t)_{t}^{\prime} \cdot t^{\prime}{ }_{x}=\frac{1}{\sin ^{2} t}\left(-\frac{1}{a \sin t}\right)=-\frac{1}{\operatorname{asin}^{3} t} ; t \neq k \pi, k \in Z .
$$

3) $d x=a(1-\cos t) d t, t^{\prime} x=\frac{1}{a(1-\cos t)}=\frac{1}{2 a \sin ^{2} \frac{t}{2}}$
$d y=a \sin t d t=2 a \sin \frac{t}{2} \cos \frac{t}{2} d t$
$y^{\prime}{ }_{x}=\frac{d y}{d x}=\frac{2 a \sin \frac{t}{2} \cos \frac{t}{2} d t}{2 a \sin ^{2} \frac{t}{2} d t}=\operatorname{cotg} \frac{t}{2}$
127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

$$
\begin{aligned}
y^{\prime \prime} & =\frac{d^{2} y}{d x^{2}}=\left(\operatorname{cotg} \frac{t}{2}\right)_{t}^{\prime} \cdot t^{\prime}{ }_{x}=-\frac{1}{2 \sin ^{2} \frac{t}{2}} \cdot \frac{1}{2 a \sin ^{2} \frac{t}{2}}= \\
& =-\frac{1}{4 a \sin ^{4} \frac{t}{2}}, t \neq 2 k \pi ; k \in Z
\end{aligned}
$$

22.1) $\mathrm{y}=\frac{\mathrm{x}^{2}}{1-\mathrm{x}}=\frac{1-\left(1-\mathrm{x}^{2}\right)}{1-\mathrm{x}}=\frac{1}{1-\mathrm{x}}-(1+\mathrm{x})$.

$$
\begin{aligned}
y^{(8)} & =\left(\frac{1}{1-x}\right)^{(8)}-(1+x)^{(8)}=\left((1-x)^{-1}\right)^{(8)}-0= \\
& =(-1)(-1)(-2)(-1) \ldots(-1-8+1)(-1) \cdot \frac{1}{(1-x)^{1+8}} \\
y^{(8)} & =\frac{8!}{(1-x)^{9}}, x \neq 1 .
\end{aligned}
$$

$$
\text { 2) } y=\frac{1+x}{\sqrt{1-x}}=(1+x)(1-x)^{-\frac{1}{2}}
$$

Dùng công thức (uv) ${ }^{(\mathrm{n})}$ (quy tắc Leibnitz, trang 125 , sách đã dẫn) có :

$$
y^{(100)}=\left((1-x)^{-\frac{1}{2}}\right)^{(100)}(1+x)+100\left((1-x)^{-\frac{1}{2}}\right)^{(99)}(1+x)^{\prime}
$$

và để ý rà̀ng :

$$
\left((1-x)^{\left.-\frac{1}{2}\right)^{(n)}}=\frac{(2 n-1)!!}{2^{n}} \cdot \frac{1}{(1-x)^{n} \sqrt{1-x}}\right.
$$

Thay lần lượt $\mathrm{n}=99 ; \mathrm{n}=100$ vào biểu thức $\mathrm{y}^{(100)}$ ta được

$$
\begin{gathered}
y^{(100)}=\frac{199!!}{2^{100}} \cdot \frac{1+x}{(1-x)^{100} \sqrt{1-x}}+\frac{197!!}{2^{99}} \cdot \frac{100}{(1-x)^{99} \sqrt{1-x}} \\
=\frac{197!!}{2^{100}(1-x)^{100} \sqrt{1-x}}(399-x), x<1
\end{gathered}
$$

127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
3) $y=e^{2 x} x^{2}$, dùng công thức (uv) ${ }^{(n)}$ có

$$
y^{(20)}=\left(e^{2 x}\right)^{(20)} x^{2}+20\left(e^{2 x}\right)^{(19)}\left(x^{2}\right)^{+}+\frac{20.19}{2!}\left(e^{2 x}\right)^{(18)}\left(x^{2}\right)^{\prime \prime}
$$

đế ý rà̀ng $\left(\mathrm{e}^{2 \mathrm{x}}\right)^{(\mathrm{n})}=2^{\mathrm{n}} \mathrm{e}^{2 \mathrm{x}}$.
Lần lượt thay $\mathrm{n}=18,19,20$ vào biểu thức $\mathrm{y}^{(20)}$ dược :

$$
y^{(20)}=2^{20} e^{2 x}\left(x^{2}+20 x+95\right)
$$

4) $y=(\sin 2 x) x^{2}$.
$y^{(50)}=(\sin 2 x)^{(50)} x^{2}+50(\sin 2 x)^{(49)}\left(x^{2}\right)^{\prime}+\frac{50.49}{2}(\sin 2 x)^{(48)}\left(x^{2}\right)^{\prime \prime}$.
Để ý rằng

$$
\begin{aligned}
& (\sin 2 x)^{(50)}=2^{50}(-1)^{25} \sin 2 x=-2^{50} \sin 2 x \\
& (\sin 2 x)^{(49)}=2^{49}(-1)^{24} \cos 2 x=2^{49} \cos 2 x \\
& (\sin 2 x)^{(48)}=2^{48}(-1)^{24} \sin 2 x=2^{48} \sin 2 x
\end{aligned}
$$

Théc các giá trị các đạo hàm cấp cao của $\sin 2 \mathrm{x}$ vào $\mathrm{y}^{(50)}$:

$$
y^{(50)}=2^{50}\left(-x^{2} \sin 2 x+50 x \cos 2 x+\frac{1225}{2} \sin 2 x\right)
$$

23. 24) $y=\frac{1}{x(1-x)}=\frac{x+(1-x)}{x(1-x)}=\frac{1}{1-x}+\frac{1}{x}$;

$$
\begin{aligned}
& y^{(n)}=\left(\frac{1}{1-x}\right)^{(n)}+\left(\frac{1}{x}\right)^{(n)}=n!\left[\frac{1}{(1-x)^{n+1}}+\frac{(-1)^{n}}{x^{n+1}}\right] \\
& \text { 2) } \begin{aligned}
y & =\frac{1}{x^{2}-3 x+2}=\frac{1}{(1-x)(2-x)}=\frac{(2-x)-(1-x)}{(1-x)(2-x)}=\frac{1}{1-x}-\frac{1}{2-x} \\
y^{(n)} & =\left(\frac{1}{1-x}\right)^{(n)}-\left(\frac{1}{2-x}\right)^{(n)}= \\
& =n!\left[\frac{1}{(1-x)^{n+1}}-\frac{1}{(2-x)^{n+1}}\right], x \neq 1, x \neq 2
\end{aligned} .
\end{aligned}
$$

127.0.0.1 downloaded 60384.pdf at Tue Jul31 08:30:34 ICT 2012
3) $y=\frac{x}{\sqrt[3]{1+x}}=(1+x)^{\frac{1}{3}} x$;
$y^{(n)}=\left((1+x)^{\frac{1}{3}} x\right)^{(n)}=\left((1+x)^{-\frac{1}{3}}\right)^{(n)} x+n\left((1+x)^{-\frac{1}{3}}\right)^{(n-1)} ;$ để ý rằng :

$$
\begin{aligned}
\left((1+x)^{-\frac{1}{3}}\right)^{(n)} & =\left(-\frac{1}{3}\right)\left(-\frac{4}{3}\right) \ldots\left(\frac{-(3 n-2)}{3}\right) \frac{1}{(1+x)^{n+\frac{1}{3}}} \\
& =(-1)^{n} \cdot \frac{1}{3^{n}}(1.4 \ldots(3 n-2)) \frac{1}{(1+x)^{n+\frac{1}{3}}}
\end{aligned}
$$

Do đó :

$$
y^{(n)}=\frac{(-1)^{n-1}}{3^{n}}(1.4 \ldots(3 n-5)) \frac{(3 n+2 x)}{(1+x)^{n+\frac{1}{3}}}, n \geq 2 ; x \neq-1 .
$$

4) $y=e^{a x} \sin b x$

$$
y^{\prime}=a e^{a x} \sin b x+b e^{a x} \cos b x
$$

Nếu đặt $\sin \varphi=\frac{b}{\sqrt{a^{2}+b^{2}}}, \cos \varphi=\frac{a}{\sqrt{a^{2}+b^{2}}}$ thì :

$$
\begin{aligned}
y^{\prime} & =\sqrt{a^{2}+b^{2}} e^{a x}(\sin b x \cos \varphi+\cos b x \sin \varphi) \\
& =\left(a^{2}+b^{2}\right)^{\frac{1}{2}} e^{a x} \sin (b x+\varphi)
\end{aligned}
$$

Có thể dùng phương pháp quy nạp suy ra :

$$
y^{(n)}=\left(a^{2}+b^{2}\right)^{\frac{n}{2}} \cdot e^{a x} \cdot \sin (b x+n \varphi)
$$

Thật vậy, công thức trên đã đúng cho trường hợp $n=1$; bây giờ giả̉ sử công thức cūng đúng choo $n=k$, nghia là ta có :

Ta sẽ chứng minh rằng :

$$
y^{(k+1)}=\left(a^{2}+b^{2}\right)^{\frac{k+1}{2}} e^{a x} \sin (b x+(k+1) \varphi)
$$

và muốn thế, lấy đạo hàm 2 vế biểu thức của $\mathrm{y}^{(\mathrm{k})}$ có :

$$
y^{(k+1)}=\left(y^{(k)}\right)^{\prime}=\left(a^{2}+b^{2}\right)^{\frac{k}{2}} e^{a x}[a \sin X+b \cos X]
$$

trong đó $\mathrm{X}:=\mathrm{bx}+\mathrm{k} \varphi$.
Mặt khác, lại có :

$$
\begin{aligned}
a \sin X+b \cos X & =\sqrt{a^{2}+b^{2}} \sin (X+\varphi)= \\
& =\left(a^{2}+b^{2}\right)^{\frac{1}{2}} \sin (b x+(k+1) \varphi)
\end{aligned}
$$

Rót cuộc, ta được

$$
y^{(k+1)}=\left(a^{2}+b^{2}\right)^{\frac{k+1}{2}} e^{a x} \sin (b x+(k+1) \varphi)
$$

24. Hiển nhiên cơng thức đã đúng với $n=0$, giả sử công thức đúng cho $\mathrm{n}=\mathrm{k}$, nghia là $\mathrm{c} \delta$:

$$
\left(x^{k-1} e^{\frac{1}{x}}\right)^{(k)}=(-1)^{k} \frac{e^{\frac{1}{x}}}{x^{k+1}}
$$

Ta sẽ chứng minh rằng công thức cũng đúng với $\mathrm{n}=\mathrm{k}+1$, nghīa là phải chứng minh rầng

$$
\left(x^{k} e^{\frac{1}{x}}\right)^{(k+1)}=(-1)^{k+1} \frac{e^{\frac{1}{x}}}{x^{k+2}}
$$

Thạt vậy, ta có :

$$
\begin{aligned}
\left(x^{k} e^{\frac{1}{x}}\right)^{(k+1)} & =\left(x \cdot x^{k-1} e^{\frac{1}{x}}\right)^{(k+1)} \\
& =\left(x^{k-1} e^{\frac{1}{x}}\right)^{(k+1)} x+(k+1)\left(x^{k-1} e^{\frac{1}{x}}\right)^{(k)}
\end{aligned}
$$

127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

Mặt khác :

$$
\left(x^{k-1} e^{\frac{1}{x}}\right)^{(k+1)}=\left[\left(x^{k-1} e^{\frac{1}{x}}\right)^{(k)}\right]^{\prime}=\left((-1)^{k} \frac{e^{\frac{1}{x}}}{x^{k+1}}\right)^{\prime}
$$

(theo giả thiết quy nạp)

$$
=(-1)^{k+1} \frac{e^{\frac{1}{x}}}{x^{k+2}}\left(\frac{1}{x}+(k+1)\right)
$$

Thế các giá trị của biểu thức vừa tính được vào biểu thức đạo hàm cấp $(k+1)$ ta dược :

$$
\begin{aligned}
\left(x^{k} e^{\frac{1}{x}}\right)^{(k+1)} & =(-1)^{k+1} \frac{e^{\frac{1}{x}}}{x^{k+2}}\left[\left(\frac{1}{x}+(k+1)\right) x\right]+(k+1) \cdot(-1)^{k} \frac{e^{\frac{1}{x}}}{x^{k+1}} \\
& =(-1)^{k+1} \frac{e^{\frac{1}{x}}}{x^{k+2}}[1+(k+1) x-(k+1) x]=(-1)^{k+1} \frac{e^{\frac{1}{x}}}{x^{k+2}} .
\end{aligned}
$$

25. Để cho gọn ta đặt

$L:=\frac{1}{2^{m} m!} ; u:=\left(x^{2}-1\right)^{m}$. Khi đó, ta có, theo đề bài :
$P_{m}(x)=L u^{(m)} ; P_{m}^{\prime}(x)=L u^{(m+1)} ; \mathbf{P}_{m}^{\prime \prime}(x)=\mathbf{L u} u^{(m+2)}$
Với các kí hiệu mới này, biểu thức cẩn chứng minh trở thành :

$$
\left(1-x^{2}\right) u^{(m+2)}-2 x u^{(m+1)}+m(m+1) u^{(m)}=0
$$

Bây giờ chúng ta sẽ chứng minh hệ thức này, muón thế lấy đạo hàm u' và được

$$
u^{\prime}=2 m x\left(x^{2}-1\right)^{m-1}
$$

suy ra

$$
\begin{gathered}
\left(x^{2}-1\right) u^{\prime}=2 m x u . \\
P_{m}^{\prime}(x)=L^{(m+1)} ; P^{\prime \prime}{ }_{m}(x)=L u^{(m+2)}
\end{gathered}
$$

127.0.0.1 7 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

Lấy đạo hàm $(m+1)$ lần đẳng thức trên :

$$
\begin{equation*}
\left(\left(x^{2}-1\right) u^{\prime}\right)^{(m+1)}=2 m(x u)^{(m+1)} \tag{1}
\end{equation*}
$$

Mặt khác, có:

$$
\begin{align*}
& 2 m(x u)^{(m+1)}=2 m\left[u^{(m+1)} x+(m+1) u^{(m)} \cdot 1\right] \\
& 2 m(x u)^{(m+1)}=2 m x u^{(m+1)}+2 m(m+1) u^{(m)} \tag{2}
\end{align*}
$$

và :

$$
\begin{gather*}
\left(\left(x^{2}-1\right) u^{\prime}\right)^{(m+1)}=u^{(m+2)}\left(x^{2}-1\right)+(m+1) u^{(m+1)}\left(x^{2}-1\right)^{\prime}+ \\
+\frac{m(m+1)}{2} u^{(m)}\left(x^{2}-1\right)^{\prime \prime} \\
=u^{(m+2)}\left(x^{2}-1\right)+2 x(m+1) u^{(m+1)}+\frac{m(m+1)}{2} \cdot 2 \cdot u^{(m)} \tag{3}
\end{gather*}
$$

Cuối cùng, thế các biểu thức (2) và (3) vào (1) sẽ được hệ thức cần chứng minh.
26. Để cho gọn, ta đạat

$$
A:=(-1)^{m} ; u:=e^{-x^{2}}
$$

và khi đó :

$$
\begin{aligned}
& H_{m}(x)=(-1)^{m} e^{x^{2}}\left(e^{-x^{2}}\right)^{(m)}=A e^{x^{2}} u^{(m)} \\
& H_{m}^{\prime}(x)=2 x H_{m}+A e^{x^{2}} u^{(m+1)} \\
& H_{m}^{\prime \prime}(x)=2 H_{m}+2 x H_{m}^{\prime}+2 A x e^{x^{2}} u^{(m+1)}+2 A e^{x^{2}} u^{(m+2)}
\end{aligned}
$$

Hệ thức cần chứng minh sẽ trở thành

$$
2 A e^{x^{2}}\left[u^{(m+2)}+2 x u^{(m+1)}+2(m+1) u^{(m)}\right]=0
$$

Vậy, muớn chứng minh hệ thức đã cho chỉ cần chứng minh hệ thức :

$$
u^{(m+2)}+2 x u^{(m+1)}+2(m+1) u^{(m)}=0
$$

Thậ vậy, vì $u=e^{-x^{2}}$ nên lấy dạo hàm hai vế :

$$
u^{\prime}=-2 x^{-x^{2}}, \text { tức là } u^{\prime}+2 x u=0 .
$$

127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

Lấy đạo hàm liên tiếp $(\mathrm{m}+1)$ lần hệ thức $\mathrm{u}^{\prime}+2 \mathrm{xu}=0$ ta được

$$
\left(u^{\prime}\right)^{(m+1)}+2(x u)^{(m+1)}=0
$$

tức là

$$
u^{(m+2)}+2 x u^{(m+1)}+2(m+1) u^{(m)}=0
$$

Muốn tính H_{m} (x) dưới dạng tường minh ta đẻ ý rằng

$$
\left(e^{-x^{2}}\right)^{(m+1)}=-2\left[x\left(e^{-x^{2}}\right)^{(m)}+m\left(e^{-x^{2}}\right)^{(m-1)}\right]
$$

Do đó :

$$
\begin{aligned}
& H_{m+1}(x)=(-1)^{m+1} e^{x^{2}}\left[-2 x\left(e^{-x^{2}}\right)^{(m)}-2 m\left(e^{-x^{2}}\right)^{(m-1)}\right] \\
& H_{m+1}(x)=2 x H_{m}(x)-2 m H_{m-1}(x)
\end{aligned}
$$

Suy ra:

$$
\begin{aligned}
& \mathrm{H}_{0}(x)=1 ; \mathrm{H}_{1}(x)=2 x \\
& \mathrm{H}_{2}(x)=2 \mathrm{xH}_{1}(x)-2 \cdot 1 \mathrm{H}_{0}(x)=(2 x)^{2}-2.1 ; \\
& \mathrm{H}_{3}(x)=2 \mathrm{xH}_{2}(x)-2 \cdot 2 \mathrm{H}_{1}(x)=(2 x)^{3}-6 .(2 x) \\
&=(2 x)^{3}-\frac{3(3-1)}{1!}(2 x)^{3-2} ; \\
& H_{4}(x)=2 x_{3}(x)-2.3 \cdot H_{2}(x)=(2 x)^{4}-12 \cdot(2 x)^{2}+12 \\
&=(2 x)^{4}-\frac{4(4-1)}{1!}(2 x)^{4-2}+\frac{4(4-1)(4-2)(4-3)}{2!}(2 x)^{4-4} .
\end{aligned}
$$

Một cách tổng quát :

$$
H_{m}(x)=(2 x)^{m}-\frac{m(m-1)}{1!}(2 x)^{m-2}+\frac{m(m-1)(m-2)(m-3)}{2!}(2 x)^{m-4}-\ldots
$$

Chutong 5

CÁC ĐỊNH Lí VẾ GIÁ TR! TRUNG BÌNH

A. Đề BÀI

1. Xét xem định lí Rolle có áp dụng được cho hàm só

$$
f(x):=(x-1)(x-2)(x-3) \text { không? }
$$

2. Hàm só $f(x):=1-\sqrt[3]{x^{2}}$ triệt tiêu khi $x_{1}=-1$ và $\cdot x_{2}=1$ nhưng $f^{\prime}(x) \neq 0$ với $|x| \leq 1$, điều đó có mâu thuẵn với định lí Rolle không?
3. Chứng minh rằng nếu mọi nghiệm của đa thức

$$
P_{n}(x):=a_{0}+a_{1} x+\ldots+a_{n} x^{n} ; a_{n} \neq 0
$$

với $\mathrm{a}_{\mathrm{k}} \in \mathbf{R} ; \mathrm{k}=\overline{0, \mathrm{n}}$, là thực thì các đạo hàm $\mathrm{P}_{\mathrm{n}}^{\prime}(\mathrm{x}), \ldots, \mathrm{P}_{\mathrm{n}}^{(\mathrm{n}-1)}(\mathrm{x})$ cūng chỉ có nghiệm thực.
4. Tìm trên đường cong $y=x^{3}$ các điếm có tiếp tuyến song song với dây cung nói 2 diểm $\mathrm{A}(-1,-1)$ và $\mathrm{B}(2,8)$.
5. Chứng minh rằng trong khoảng 2 nghiệm thực của phương trình $\mathrm{f}(\mathrm{x})=0$ có ít nhất một nghiệm (thực) của phương trình $\mathrm{f}^{\prime}(\mathrm{x})=0$.
6. Chứng minh rằng phương trình $\mathrm{x}^{\mathrm{n}}+\mathrm{px}+\mathrm{q}=0$, với n nguyên dương không thể có quá 2 nghiệm thực phân biệt nếu n chẩn, không quá 3 nghiệm thực phân biệt nếu n lè.
7. Giải thích tại sao công thức Cauchy không áp dụng được đối với các hàm só

$$
\mathrm{f}(\mathrm{x}):=\mathrm{x}^{2} ; \mathrm{g}(\mathrm{x}):=\mathrm{x}^{3} ;-1 \leq \mathrm{x} \leq 1
$$

8. Chứng minh các bất đả̉ng thức
1) $|\sin x-\sin y| \leq|x-y|$
2). $|\operatorname{arctg} a-\operatorname{arctg} b| \leq|a-b|$
2) $\frac{a-b}{a}<\ln \frac{a}{b}<\frac{a-b}{b}, 0<b<a$.
9. 10) Cho f, g, h là ba hàm số liên tục trên [a, b] và khả vi trên (a, b). Với $x \in[a, b]$; đặt :

$$
F(x):=\left|\begin{array}{lll}
f(x) & f(a) & f(b) \\
g(x) & g(a) & g(b) \\
h(x) & h(a) & h(b)
\end{array}\right|
$$

(i) Chứng minh rằng tồn tại $\mathrm{c} \in(\mathrm{a}, \mathrm{b})$ sao cho

$$
F^{\prime}(\mathrm{c})=0 .
$$

(ii) Chứng tỏ rằng với cách chọn g và h thích hợp thì từ (i) có thể suy ra định lí Lagrange.
(iii) Chứng tỏ rầng với cách chọn h thích hợp thì từ (i) có thể suy ra định lí Cauchy.
2) Cho f là một hàm số liên tục trên $[a, b]$ và khả vi trên (a, b) và $\mathrm{f}(\mathrm{a})=\mathrm{f}(\mathrm{b})=0$. Chứng minh rà̀ng với mọi $\alpha \in \mathbf{R}$, tổn tại một điểm $c \in(a, b)$ sao cho $f^{\prime}(c)=\alpha f(c)$.
3) Cho f là một hàm số khả vi trên $[a, b]$ và d là một số ở giữa $f^{\prime}(a)$ và $f^{\prime}(b)$. Chứng minh rằng tồn tại $c \in(a, b)$ sao cho $f^{\prime}(c)=d$.
10. Tìm các giới hạn

1) $\lim _{x \rightarrow+\infty}(\sqrt{x+\sqrt{x+\sqrt{x}}}-\sqrt{x})$;
2) $\lim _{x \rightarrow 0} \frac{a^{x}-b^{x}}{x}$;

127:0.081 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
3) $\lim _{x \rightarrow \infty} \frac{e^{\frac{1}{x}}-\cos \frac{1}{x}}{1-\sqrt{1-\frac{1}{x^{2}}}}$;
4) $\lim _{x \rightarrow 0}\left(1+\operatorname{atg}^{2} x\right)^{\frac{1}{x \sin x}}, a \neq 0$.
11. Xác định a, b sao cho biểu thức sau đây có giới hạn hữu hạn khi $\mathrm{x} \rightarrow 0$:

$$
f(x):=\frac{1}{\sin ^{3} x}-\frac{1}{x^{3}}-\frac{a}{x^{2}}-\frac{b}{x}
$$

12. Cho $\mathrm{f}(\mathrm{x})$ là một hàm số thực khả vi trên $[\mathrm{a}, \mathrm{b}]$ và có đạo hàm $\mathrm{f}^{\prime}(\mathrm{x})$ trên (a, b), chứng minh rằng $\forall \mathrm{x} \in(\mathrm{a}, \mathrm{b})$ có thể tìm được ít nhất một điểm $\mathrm{c} \in(\mathrm{a}, \mathrm{b})$ sao cho :

$$
f(x)-f(a)-\frac{f(b)-f(a)}{b-a}(x-a)=\frac{(x-a)(x-b)}{2} f^{\prime \prime}(c)
$$

13. Cho $\mathrm{f}(\mathrm{x}):=\mathrm{x}^{10}-3 \mathrm{x}^{6}+\mathrm{x}^{2}+2$, tìm 3 số hạng đầu của khai triển Taylor tại $\mathrm{x}_{\mathrm{o}}=1$; áp dụng để tính $\mathrm{f}(1,03)$.
14. Cho $f(x):=x^{8}-2 x^{7}+5 x^{6}-x+2$; tìm 3 só hạng đấu của khai triển Taylor tại $\mathrm{x}_{0}=2$; áp dụng để tính xấp xỉ $(2,02)$ và $\mathrm{f}(1,97)$.
15. Tính xấp xỉ các giá trị sau và đánh giá sai sô :
1) $\cos 10^{\circ}$;
2) $\ln (1,5)$.
16. Khảo sát tính đơn điệu các hàm số :
1) $y=x^{3}+x$;
2) $y=\operatorname{arctg} x-x$.
17. Tìm cực trị các hàm số :
1) $y=2 x^{3}-3 x^{2}$;
2) $y=\frac{3 x^{2}+4 x+4}{x^{2}+x+1}$;
3) $y=x \sqrt{x^{2}-2}$;
4) $y=x-\ln (1+x)$;
5) $y=\frac{1+3 x}{\sqrt{4+x^{2}}}$.
127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
18. Khảo sát và vẽ đồ thị các hàm số :
1) $y=\frac{2-x^{2}}{1+x^{4}}$;
2) $y=\sqrt[3]{x^{3}-x^{2}-x+1}$;
3) $y=\frac{x^{4}+8}{x^{3}+1}$;
4) $y=\frac{x-2}{\sqrt{x^{2}+1}}$;
5) $y=\frac{|1+x|^{\frac{3}{2}}}{\sqrt{x}}$;
6) $y=1-x+\sqrt{\frac{x^{3}}{x+3}}$.
19. Khảo sát vẽ đồ thị hàm số

$$
\mathrm{r}=\mathrm{a}+\mathrm{b} \cos \varphi, 0<\mathrm{a} \leq \mathrm{b}
$$

20. Dùng phương pháp Newton, lính gần đúng nghiệm của các phương trình sau với sai số tuyệt đối không quá 10^{-5}
1) $x^{2}-\sin \pi x=0$
2) $2 \lg x-\frac{x}{2}+1=0$.

B. LỜI GIẢI

1. Hàm số $f(x)=(x-1)(x-2)(x-3)$ thoả mãn mọi giả thiết của định lí Rolle trơng các khoảng có các mút là nghiệm của phương $\operatorname{trình} \mathrm{f}(\mathrm{x})=0$.
2. Tại $x=0$ hàm số không có đạo hàm, do vậy tại $x=0$ hàm số $f(x)$ không thoả mãn giả thiết về đạo hàm của định lí Ralle, do vậy không có mấu thuẫn gì với đị̣nh lí Rolle.
3. Xét đa thức bậc n :

$$
P_{n}(x):=a_{0}+a_{1} x+\ldots+a_{n} x^{n}, a_{n} \neq 0, a_{k} \in \mathbf{R}, k=\overline{0, n}
$$

theo giả thiết, phương trình $P_{n}(x)=0$ cón nghiệm thực phân biệt hoạ̣c có một số nghiệm bợi, không giảm tính tổng quát, gọi các 127.0.0.84downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
nghiệm thực đó là $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}, \mathrm{k} \leq \mathrm{n}$; xét đa thức đạo hàm $\mathrm{P}_{\mathrm{n}}^{\prime}(\mathrm{x})$, đa thức này có bậc là ($\mathrm{n}-1$); khi đó, vì :

$$
P_{n}\left(x_{1}\right)=P_{n}\left(x_{2}\right)=\ldots=P_{n}\left(x_{k}\right)=0
$$

nên đa thức $P_{n}(x)$ thoả các già thiết của định lí Rolle trong các đoạn $\left[\mathrm{x}_{\mathrm{o}}, \mathrm{x}_{1}\right],\left[\mathrm{x}_{1}, \mathrm{x}_{2}\right], \ldots,\left[\mathrm{x}_{\mathrm{k}-1}, \mathrm{x}_{\mathrm{k}}\right]$, do đó, tồn tại $x_{i}{ }^{\prime} \in\left(x_{j-1}, x_{i}\right), i=\overline{1, k}$ sao cho

$$
\mathrm{P}_{\mathrm{n}}^{\prime}\left(\mathrm{x}_{\mathrm{i}}{ }^{\prime}\right)=0 .
$$

Hệ thức này chứng tỏ đa thức đạo hàm $\mathrm{P}_{\mathrm{n}}(\mathrm{x})$ cũng chỉ có $(\mathrm{n}-1)$ nghiệm thực phân biệt hoặc trùng nhau. Lập luận tương tự, có thể kết luận các đạo hàm $P_{n}^{\prime \prime}(x), \ldots, P_{n}^{(n-1)}(x)$ cūng chỉ có nghiệm thực.
4. Hệ só́ góc k của dây cung nói hai điểm $\mathrm{A}(-1,-1)$ và $\mathrm{B}(2,8)$ là

$$
k=\frac{8-(-1)}{2-(-1)}=\frac{9}{3}=3
$$

Bài toán trở thành : Tî̀m trên đô thị của hàm số $\mathrm{y}=\mathrm{x}^{3}$ một điếm mà tại đó tiếp tuyến của đồ thị có hệ số góc là 3 ; điều đó dẫn đến việc tìm x sao cho $y^{\prime}=3$ nghĩa là

$$
3 x^{2}=3 \Rightarrow x= \pm 1
$$

Suy ra điểm phải tìm là $x=-1 ; y=(-1)^{3}$ và $x=1, y=(1)^{3}$, tức là các điếm $\mathrm{A}(-1,-1)$ và $\mathrm{C}(1,1)$.
5. Theo giả thiết, gọi 2 nghiệm thực phân biệt của phương trình $f(x)=0$ là x_{1} và x_{2}, nghĩa là

$$
f\left(x_{1}\right)=f\left(x_{2}\right)=0
$$

Khi đó, nếu hàm số $\mathrm{f}(\mathrm{x})$ liên tục khả vi trong khoảng ($\mathrm{x}_{1}, \mathrm{x}_{2}$) thì theo định lí Rolle, tồn tại $\mathrm{c} \in\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$ sao cho $\mathrm{f}^{\prime}(\mathrm{c})=0$, điều đó có nghĩa là phương trình $\mathrm{f}^{\prime}(\mathrm{x})=0$ có ít nhất một nghiệm thực. 127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
6. Gọi $P_{n}(x):=x^{n}+p x+q$.

Khi đó $\mathrm{P}_{\mathrm{n}}^{\prime}(\mathrm{x})=\mathrm{nx}{ }^{\mathrm{n}-1}+\mathrm{p}$. Đa thức $\mathrm{P}_{\mathrm{n}}(\mathrm{x})$ có n nghiệm thực hoạac phức, phân biệt hoặc trùng nhau và đa thức $\mathrm{P}_{\mathrm{n}}^{\prime}(\mathrm{x})$ có $(\mathrm{n}-\mathrm{I})$ nghiệm thực hoạc phức, phân biệt hoặc trùng nhau, đặc biệt, nghiệm của đa thức dạo hàm là nghiệm của phương trình $\mathrm{x}^{\mathrm{n}-1}=-\frac{\mathrm{p}}{\mathrm{n}}$; phương trình này chỉ có 1 nghiệm thực khi n chấn và có không quá 2 nghiệm thực khi n lẻ. Do đó, nếu n chẫn và nếu $\mathrm{P}_{\mathrm{n}}(\mathrm{x})$ có 3 nghiệm thực phân biệt $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$ thì áp dưng định lí Rolle vào $\left[\mathrm{x}_{1}, \mathrm{x}_{2}\right]$ và $\left[\mathrm{x}_{2}, \mathrm{x}_{3}\right]$ sē suy ra đa thức $\mathrm{P}_{\mathrm{n}}^{\prime}(\mathrm{x})$ có ít nhất 2 nghiệm thực, và điều này mâu thuẫn với điều khẳng định trên ; trường hợp n lẻ cũng lập luận tương tự.
7. Giả thiết của định lí Cauchy đòi hỏi $g^{\prime}(x) \neq 0 \forall x \in[-1,1]$; ở đây $g^{\prime}(x)=3 \mathrm{x}^{2}$, và $\mathrm{g}^{\prime}(\mathrm{x})=0$ khi $\mathrm{x}=0$, do vậy không thể áp dụng được công thức Cauchy đói với các hàm số

$$
f(x):=x^{2} ; g(x):=x^{3} ; x \in[-1,1] .
$$

8. 9) Xét hàm số $f(t)=$ sint trên $[x, y]$, theo công thức Lagrange ta có : $f(y)-f(x)=(y-x) f^{\prime}(c), c \in(x, y)$
tức là

$$
\sin y-\sin x=(y-x) \operatorname{cosc} ;
$$

suy ra

$$
|\sin x-\sin y|=|y-x \| \cos c|
$$

vì $|\cos c| \leq 1$ nên suy ra :

$$
|\sin x-\sin y| \leq|x-y| .
$$

2) Xét hàm só $f(x)=\operatorname{arctg} x, x \in[a, b]$. Hàm só này thoả các giả thiết của công thức Lagrange, do đó:

$$
\operatorname{arctgb}-\operatorname{arctga}=(\mathrm{b}-\mathrm{a})(\operatorname{arctg} x)^{\prime}=\mathrm{c} ; \mathrm{c} \in(\mathrm{a}, \mathrm{~b}) \text {, nghīa là : }
$$

127.0.0.1. downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

$$
\begin{gathered}
\operatorname{arctg} b-\operatorname{arctg} a=(b-a) \frac{1}{1+c^{2}} \\
|\operatorname{arctg} a-\operatorname{arctg} b|=|b-a| \cdot \frac{1}{1+c^{2}} \leq|b-a|
\end{gathered}
$$

3) Xét hàm số $f(x)=\ln x, x \in[b, a], b>0$. Hàm $\ln x$ thoả mọi giả thiết của công thức Lagrange, do đó có :

$$
f(a)-f(b)=(a-b) f^{\prime}(c) ; b<c<a
$$

tức là :

$$
\begin{gathered}
\ln a-\ln b=(a-b) \frac{1}{c} \\
\ln \frac{a}{b}=(a-b) \frac{1}{c}
\end{gathered}
$$

Vì $\mathrm{b}<\mathrm{c}<$ a nên

$$
\frac{a-b}{a}<\frac{a-b}{c}<\frac{a-b}{b}
$$

Suy ra:

$$
\frac{a-b}{a}<\ln \frac{a}{b}<\frac{a-b}{b} .
$$

9. 10. (i) Theo giả thiết và theo cách tính định thức, suy ra $F(x)$ liên tục trong [a, b] và khả vi trong (a, b). Hơn nữa, theo tính chất của định thức, suy ra :

$$
F(a)=F(b)=0
$$

Vậy, theo định lí Rolle, tôn tại $\mathrm{c} \in(\mathrm{a}, \mathrm{b})$ sao cho $\mathrm{F}^{\prime}(\mathrm{c})=0$.
(ii) Chọn $g(x) \equiv x$ và $h(x) \equiv 1$, ta có

$$
F(x)=\left|\begin{array}{ccc}
f(x) & f(a) & f(b) \\
x & a & b \\
1 & 1 & 1
\end{array}\right|
$$

127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

Do vậy (dĩ nhiên, g và h thoả giả thiết của đề bài), theo tính chất của dịnh thức có thể viết:

$$
F(x)=\left|\begin{array}{ccc}
f(x) & f(a) & f(b)-f(a) \\
x & a & b-a \\
1 & 1 & 0
\end{array}\right|
$$

Suy ra

$$
F(x)=(b-a) f(a)-a[f(b)-f(a)]-(b-a) f(x)+x[f(b)-f(a)]
$$

Suy ra:

$$
F^{\prime}(x)=-(b-a) f^{\prime}(x)+f(b)-f(a)
$$

Dû̀ng phần (i) đã chứng minh ở trên suy ra, tồn tại $\mathrm{c} \in(\mathrm{a}, \mathrm{b})$ sao cho

$$
F^{\prime}(c)=0=-(b-a) f^{\prime}(c)+f(b)-f(a)
$$

Từ đó, suy ra (ii).
(iii) Chỉ cần chọn $h(x) \equiv 1$ và lập luận tương tự phẩn (ii) sē suy ra kết luận của (iii).
2. Ta xét hàm só

$$
g(x):=e^{-\alpha x} f(x), \forall \alpha \in \mathbf{R} ; x \in[a, b]
$$

Vĭ $f(x)$ liên tục trên $[a, b]$, khả vi trên (a, b) nên suy ra $g(x)$ cūng liên tục trên $[a, b]$ và khả vi trên (a, b). Hơn nữa, vì $f(a)=f(b)=0$ nên

$$
\mathrm{g}(\mathrm{a})=\mathrm{g}(\mathrm{~b})=0
$$

Vậy hàm số $g(x)$ thoả mãn giả thiết của đinh lí Rolle, do đó tồn tại $c \in(a, b)$ sao cho:

$$
g^{\prime}(c)=0
$$

cũng tức là :

$$
-\alpha e^{-\alpha c} f(c)+e^{-\alpha c_{1}} f^{\prime}(c)=0
$$

Vì $\mathrm{e}^{-\alpha c} \neq 0 \forall \alpha, \mathrm{c}$, suy ra:

$$
f^{\prime}(\mathrm{c})=\alpha \mathrm{f}(\mathrm{c})
$$

127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
3. Xét hàm $g(x):=d(x-a)-f(x)$.

Vì $f(x)$ khả vi trên $[a, b]$ nên $g(x)$ cũng khả vi trện (a, b) và :

$$
\mathrm{g}^{\prime}(\mathrm{x})=\mathrm{d}-\mathrm{f}^{\prime}(\mathrm{x}) ; \mathrm{x} \in(\mathrm{a}, \mathrm{~b})
$$

Vì d là một sớ ở giữa $f^{\prime}(a)$ và $f^{\prime}(b)$ nên dĩ nhiên $d \neq f^{\prime}(a) ; d \neq f^{\prime}(b)$ và $\mathrm{f}^{\prime}(\mathrm{a}) \neq \mathrm{f}^{\prime}(\mathrm{b})$. Do đó $\mathrm{g}^{\prime}(\mathrm{x})$ không thể dương với mọi $\mathrm{x} \in(\mathrm{a}, \mathrm{b})$ và $g^{\prime}(x)$ cũng không thẻ âm với mọi $x \in(a, b)$, vậy tồn tại $c \in(a, b)$ sao cho $g^{\prime}(c)=d-f^{\prime}(c)=0$
Suy ra $f^{\prime}(c)=d$.
10. 1) $\sqrt{x+\sqrt{x+\sqrt{x}}}-\sqrt{x}=\frac{\sqrt{x+\sqrt{x}}}{\sqrt{x+\sqrt{x+\sqrt{x}}}+\sqrt{x}}=$

$$
=\frac{\sqrt{1+\frac{1}{\sqrt{x}}}}{\sqrt{1+\frac{\sqrt{x+\sqrt{x}}}{x}}+1}
$$

Dùng công thức khai triển hữu hạn (5.21a), trang 149)

$$
\sqrt{1+x}=1+\frac{1}{2} x-\frac{1}{8} x^{2}+o\left(x^{2}\right)
$$

có thể viết, chẳng hạn

$$
\sqrt{1+\frac{1}{\sqrt{x}}}=1+\frac{1}{2} \cdot \frac{1}{\sqrt{x}}-\frac{1}{8} \cdot \frac{1}{x}+o\left(\frac{1}{x}\right)
$$

Suy га:

$$
\lim _{x \rightarrow+\infty}(x+\sqrt{x+\sqrt{x}}-\sqrt{x})=\frac{1}{2}
$$

2) Ta có :

$$
a^{x}=e^{x \ln a}=1+x \ln a+o(x)
$$

(dùng công thức (5.18a), trang 148)
127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
và $\quad \frac{a^{x}-b^{x}}{x}=\frac{1+x \ln a+x o_{1}(x)-1-x \ln b-x o_{2}(x)}{x}$

$$
=\ln \frac{a}{b}+o_{1}(x)-o_{2}(x) ; \text { tại lân cận } x=0 \text {. }
$$

Do đó: $\lim _{x \rightarrow 0} \frac{a^{x}-b^{x}}{x}=\ln \frac{a}{b}$,
3) Ta có:

$$
\begin{aligned}
& \mathrm{e}^{\frac{1}{\mathrm{x}}}=1+\frac{1}{\mathrm{x}}+\frac{1}{2 \mathrm{x}^{2}}+o_{1}\left(\frac{1}{\mathrm{x}^{2}}\right) \\
& \sqrt{1-\frac{1}{\mathrm{x}^{2}}}=1-\frac{1}{2 \mathrm{x}^{2}}+o_{2}\left(\frac{1}{\mathrm{x}^{2}}\right) \\
& \cos \frac{1}{\mathrm{x}}=1-\frac{1}{2} \cdot \frac{1}{\mathrm{x}^{2}}+o_{3}\left(\frac{1}{\mathrm{x}^{2}}\right)
\end{aligned}
$$

Do đó : khi $\mathrm{x} \rightarrow \infty$, có thể viết

$$
\frac{e^{\frac{1}{x}}-\cos \frac{1}{x}}{1-\sqrt{1-\frac{1}{x^{2}}}}=\frac{1+\frac{1}{x}+\frac{1}{2 x^{2}}+o_{1}\left(\frac{1}{x^{2}}\right)-1+\frac{1}{2 x^{2}}+o_{3}\left(\frac{1}{x^{2}}\right)}{1-1+\frac{1}{2 x^{2}}+o_{2}\left(\frac{1}{x^{2}}\right)}
$$

và

$$
\lim _{x \rightarrow \infty} \frac{e^{\frac{1}{x}}-\cos \frac{1}{x}}{1-\sqrt{1-\frac{1}{x^{2}}}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{\frac{1}{2 x^{2}}}=+\infty
$$

4) Dùng các công thức

$$
\begin{gathered}
\ln (1+x)=x-\frac{x^{2}}{2}+o_{1}\left(x^{2}\right), x \rightarrow 0 \\
\sin x=x-\frac{x^{3}}{3!}+o_{2}\left(x^{3}\right), x \rightarrow 0
\end{gathered}
$$

127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
và đặt $A:=\left(1+\operatorname{atg}^{2} x\right)^{\frac{1}{x \sin x}}$ ta có :

$$
\begin{aligned}
\ln A & =\frac{\ln \left(1+\operatorname{atg}^{2} x\right)}{x \sin x} \\
& \left.=\frac{\operatorname{atg}^{2} x-\frac{1}{2} a^{2} \operatorname{tg}^{4} x+o_{I}\left(a^{2} \operatorname{tg}^{4} x\right)}{x\left(x-\frac{x^{3}}{3!}+o_{2}\left(x^{3}\right)\right)}, \text { (tại lân cận } x=0\right) .
\end{aligned}
$$

Suy ra

$$
\lim _{x \rightarrow 0} \ln A=\lim _{x \rightarrow 0} \frac{\operatorname{atg}^{2} x}{x^{2}}=a
$$

Do đo $\lim _{x \rightarrow 0} A=\lim _{x \rightarrow 0}\left(1+\operatorname{atg}^{2} x\right)^{\frac{1}{x \sin x}}=e^{a}$.
11. $f(x)=\frac{1}{\sin ^{3} x}-\frac{1}{x^{3}}-\frac{a}{x^{2}}-\frac{b}{x}=\frac{x^{3}-\sin ^{3} x\left(1+a x+b x^{2}\right)}{x^{3} \sin ^{3} x}$.

Tại lân cận $\mathrm{x}=0$, có thể viết

$$
\sin x=x-\frac{x^{3}}{3!}+o\left(x^{3}\right)
$$

Do đố, mā̃u số của $f(x)$ có thể viết :

$$
x^{3}\left[x-\frac{x^{3}}{3!}+o\left(x^{3}\right)\right]^{3}=x^{6}+o\left(x^{6}\right)
$$

và

$$
\sin ^{3} x\left(1+a x+b x^{2}\right)=x^{3}+a x^{4}+\left(b-\frac{1}{2}\right) x^{5}+c x^{6}+o\left(x^{6}\right)
$$

trong đó c là hệ số của x^{6},
127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
và :

$$
f(x)=\frac{a x^{4}+\left(b-\frac{1}{2}\right) x^{5}+c x^{6}+o\left(x^{6}\right)}{x^{6}+o\left(x^{6}\right)}
$$

Do đó để tồn tại giới hạn hữ̛́u hạn của $\mathrm{f}(\mathrm{x})$ khi $\mathrm{x} \rightarrow 0$, phải có $\mathrm{a}=0$ và $\mathrm{b}=\frac{1}{2}$.

12. Đặt

$$
\varphi(x):=f(x)-f(a)-\frac{f(b)-f(a)}{b-a}(x-a)-\frac{(x-a)(x-b)}{2} \cdot \lambda
$$

Lấy $x_{0} \in(a, b)$; xác định λ từ điều kiện :
$\varphi\left(x_{0}\right)=f\left(x_{0}\right)-f(a)-\frac{f(b)-f(a)}{b-a}\left(x_{0}-a\right)-\frac{\left(x_{0}-a\right)\left(x_{0}-b\right)}{2} \cdot \lambda=0$.
Khi đó, có

$$
\varphi\left(x_{0}\right)=\varphi(a)=\varphi(b)=0
$$

Theo giả thiết và theo định nghĩa hàm $\varphi(x)$, suy ra φ liên tục, khả vi trên $\left[\mathrm{a}, \mathrm{x}_{\mathrm{o}}\right]$, do đó $\varphi(\mathrm{x})$ thoả giả thiết định lí Rolle với $\mathrm{x} \in\left[\mathrm{a}, \mathrm{x}_{\mathrm{o}}\right]$, do đó, tồn tại $\mathrm{c}_{1} \in\left(\mathrm{a}, \mathrm{x}_{\mathrm{o}}\right)$ sao cho $\varphi^{\prime}\left(\mathrm{c}_{1}\right)=0$.

Hoàn toàn tương tự, tồn tại $c_{2} \in\left(x_{0}, b\right)$ sao cho $\varphi^{\prime}\left(c_{2}\right)=0$. Mặt khác, từ định nghīa, suy ra :

$$
\varphi^{\prime}(x)=f^{\prime}(x)-\frac{f(b)-f(a)}{b-a}-\lambda\left(x-\frac{a+b}{2}\right)
$$

Theo giả thiết $f(x)$ có đạo hàm cấp hai, suy ra φ cūng có đạo hàm cấp 2 và vì̀ $\varphi^{\prime}\left(c_{1}\right)=\varphi^{\prime}\left(c_{2}\right)=0$ nên, cũng theo định lí Rolle, tồn tại $c \in\left(c_{1}, c_{2}\right)$ sao cho φ " $(c)=0$, nghīa là

$$
\varphi^{\prime \prime}(c)=f^{\prime \prime}(c)-\lambda=0
$$

127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
và hệ thức trèn dẫn đến

$$
f(x)-f(a)-\frac{f(b)-f(a)}{b-a}(x-a)=\frac{(x-a)(x-b)}{2} \cdot f^{\prime \prime}(c), c \in(a, b) .
$$

$$
\begin{aligned}
& \text { 13. } \mathrm{f}^{\prime}(\mathrm{x})=10 \mathrm{x}^{9}-18 \mathrm{x}^{5}+2 \mathrm{x} ; \mathrm{f}^{\prime}(1)=-6 \text {. } \\
& f^{\prime \prime}(x)=10.9 \cdot x^{8}-18.5 \cdot x^{4}+2 ; f^{\prime \prime}(1)=2 . \\
& f(1)=1-3+1+2=1 \text {. } \\
& f(x)=1-6(x-1)+(x-1)^{2}+\ldots \\
& f(1,03) \approx 1-6(0,03)+(0,03)^{2} \approx 0,821 .
\end{aligned}
$$

14. $f(x)=x^{8}-2 x^{7}+5 x^{6}-x+2$

$$
\begin{aligned}
& f(2)=320 . \\
& f^{\prime}(x)=8 x^{7}-14 x^{6}+30 x^{5}-1 ; f^{\prime}(2)=1087 \\
& f^{\prime \prime}(x)=56 x^{6}-84 x^{5}+150 x^{4} ; f^{\prime \prime}(2)=3296 . \\
& f(x)=320+1087(x-2)+1648(x-2)^{2}+\ldots \\
& f(2,02) \approx 320+1087(0,02)+1648(0,02)^{2} \approx 342,399 ; \\
& f(1,97) \approx 320+1087(-0,03)+1648(-0,03)^{2} \approx 288,873 .
\end{aligned}
$$

15. 1) Dùng công thức

$\cos x \sim 1-\frac{x^{2}}{2}$ với sai só $\delta<x^{2}$ có :
$\cos 10^{\circ} \approx 1-\left(\frac{10 \cdot 3,1416}{180}\right)^{2} \cdot \frac{1}{2}=0,985$ với $\delta<0,001$.
2) Dùng công thức

$$
\ln (1+x) \sim x-\frac{x^{2}}{2}+\frac{x^{3}}{3}
$$

với sai s $\sigma \delta<\mathrm{x}^{3}$ có
127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

$$
\ln (1,5)=\ln (1+0,5) \approx 0,5-\frac{(0,5)^{2}}{2}+\frac{(0,5)^{3}}{3} \approx 0,42
$$

với sai số $\delta<0,01$.
16. 1) $y=x^{3}+x, y^{\prime}=3 x^{2}+1$.
$y^{\prime}>0 \forall x$, hàm sớ tăng với mọi x.
2) $y=\operatorname{arctg} x-x ; y^{\prime}=\frac{1}{1+x^{2}}-1=\frac{-x^{2}}{1+x^{2}}$.
$y^{\prime} \leq 0 \forall x$, hàm số giảm với mọi x .
17. 1) $y=2 x^{3}-3 x^{2}, y^{\prime}=6 x^{2}-6 x=6 x(x-1)$;
$\mathrm{y}^{\prime}=0$ khi $\mathrm{x}=0, \mathrm{x}=1$.
$y_{\max }=y(0)=0 ; y_{\text {min }}=y(1)=-1$.
2) $y=\frac{3 x^{2}+4 x+4}{x^{2}+x+1}=3+\frac{x+1}{x^{2}+x+1}, y^{\prime}=-\frac{x(x+2)}{\left(x^{2}+x+1\right)^{2}}$
$x^{2}+x+1>0 \forall x$; dấu y^{\prime} là dấu $-x(x+2)$.
$\mathrm{y}^{\prime}=0$ khi $\mathrm{x}=-2, \mathrm{x}=0$.
$y_{\text {min }}=y(-2)=\frac{8}{3} ; \quad y_{\text {max }}=y(0)=4$.
3) $\mathrm{y}=\mathrm{x} \sqrt{\mathrm{x}^{2}-2}$; miền xác định : $|\mathrm{x}| \geq \sqrt{2}$.

$$
y^{\prime}=\frac{2\left(x^{2}-1\right)}{\sqrt{x^{2}-2}}
$$

$y^{\prime}=0$ khi $x= \pm 1$, những điểm này không thuộc miển xác định.
$y^{\prime}= \pm \infty$ khi $x= \pm \sqrt{2}$, y^{\prime} không đổi dấu khi x qua các giá trị $x= \pm \sqrt{2}$.
Vậy hàm sớ không có cực trị.
127.0.0.94downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
4) $\mathrm{y}=\mathrm{x}-\ln (1+\mathrm{x})$; miền xác định: $\mathrm{x}>-1$.
$y^{\prime}=1-\frac{1}{1+x}=\frac{x}{1+x}$.
$y^{\prime}=0$ khi $x=0$ và $y^{\prime \prime}(0)>0$, do đó :
$y_{\min }=y(0)=0$.
5) $\mathrm{y}=\frac{1+3 \mathrm{x}}{\sqrt{4+\mathrm{x}^{2}}}$; miền xác định: $\forall \mathrm{x}$.

$$
y^{\prime}=\frac{12-x}{\left(4+x^{2}\right)^{\frac{3}{2}}}
$$

$y^{\prime}=0$ khi $x=12 ; y^{\prime \prime}(12)<0$, do đó $:$
$y_{\max }=y(12)=\frac{37}{\sqrt{148}}$.
18. 1) Hàm só́ $y=\frac{2-x^{2}}{1+x^{4}}$ xác định với mọi x và là một hàm số chẳn :
đồ thị đối xứng qua trục tung, do vậy chỉ cần khảo sát trong khoảng $[0,+\infty)$.

Đạo hàm

$$
y^{\prime}=\frac{2 x\left(x^{4}-4 x^{2}-1\right)}{\left(1+x^{4}\right)^{2}}
$$

Dấu y^{\prime} là dấu của tích $s o ̂ ́ x\left(x^{4}-4 x^{2}-1\right)$, mặt khác vì có thẻ̉ viết

$$
\begin{aligned}
x^{4}-4 x^{2}-1 & =\left[x^{2}-(2+\sqrt{5})\right]\left[x^{2}-2+\sqrt{5}\right] \\
& =(x-\sqrt{2+\sqrt{5}})(x+\sqrt{2+\sqrt{5}})\left(x^{2}-2+\sqrt{5}\right)
\end{aligned}
$$

và $x^{2}-2+\sqrt{5}>0 \forall x$ nên, dấu y^{\prime} trở thành dấu của $x(x-\sqrt{2+\sqrt{5}})(x+\sqrt{2+\sqrt{5}})$, do đó có bảng dấu $y^{\prime}:$

x	0		$\sqrt{2+\sqrt{5}}$	$+\infty$
y^{\prime}	0	-	0	+

Như thé ta có :

$$
y_{\max }=y(0)=2 ; y_{\min }=y(\pm \sqrt{2+\sqrt{5}})=1-\frac{\sqrt{5}}{2}
$$

Ngoài ra:

$$
y=0 k h i x^{2}-2=0 \Rightarrow x= \pm \sqrt{2}
$$

Ta lại có

$$
\lim _{x \rightarrow \infty} y=\lim _{x \rightarrow \infty} \frac{-x^{2}+2}{1+x^{4}}=0
$$

nên tiệm cận ngang là trục hoành $O x$.
Dưới đây là bảng biến thiên và đồ thị tương ứng :

x	$-\infty$	$-\sqrt{2+\sqrt{5}}$	$-\sqrt{2}$	0	$\sqrt{2}$	$\sqrt{2+\sqrt{5}}$	$+\infty$	
y^{\prime}	-	0	+	+0	-	1	0	+
y	0	$1-\frac{\sqrt{5}}{2}$	0	0	0	$1-\frac{\sqrt{5}}{2}$	0	

Hinh $1 /$
127.0.096 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
2) Hàm só $y=\sqrt[3]{x^{3}-x^{2}-x+1}$ xác định với mọi x, có đạo hàm

$$
y^{\prime}=\frac{3 x^{2}-2 x-1}{3 \sqrt[3]{\left(x^{3}-x^{2}-x+1\right)^{2}}}=\frac{(x-1)\left(x+\frac{1}{3}\right)}{3 \sqrt[3]{(x-1)^{4}(x+1)^{2}}}
$$

$\lim _{x \rightarrow-1} y^{\prime}=\infty$ nhưng y^{\prime} không đổi dấu khi qua giá trị $x=-1$;
mặc khác $\lim _{x \rightarrow 1} y^{\prime}= \pm \infty$ và đổi dấu khi qua giá trị $x=1$, do vậy có :

$$
\begin{aligned}
& y_{\max }=y\left(-\frac{1}{3}\right)=\frac{-2}{3} \sqrt[3]{4} \\
& y_{\min }=y(1)=0
\end{aligned}
$$

Để tìm tiệm cận ta viết y dưới dạng

$$
\begin{gathered}
y=\sqrt[3]{x^{3}-x^{2}-x+1}=\sqrt[3]{x^{3}\left(1-\frac{1}{x}-\frac{1}{x^{2}}+\frac{1}{x^{3}}\right)} \\
y=x \sqrt[3]{1+u}, u=-\frac{1}{x}-\frac{1}{x^{2}}+\frac{1}{x^{3}} \\
y=x(1+u)^{\frac{1}{3}}
\end{gathered}
$$

hay là
Dùng công thức khai triển hữu hạn (5.21) trang 149 , sách đā dān :

$$
(1+u)^{\frac{1}{3}}=1+\frac{1}{3} u+o\left(u^{2}\right)
$$

ta dược :

$$
\begin{aligned}
& y=x\left[1+\frac{1}{3}\left(-\frac{1}{x}-\frac{1}{x^{2}}+\frac{1}{x^{3}}\right)+o\left(\frac{1}{x^{2}}\right)\right], \text { tức là : } \\
& y=x-\frac{1}{3}+o\left(\frac{1}{x}\right)
\end{aligned}
$$

Vậy, tiệm cận xiên : $y=x-\frac{1}{3}$.

Hinh 12
Ngoài ra, ta có

$$
y=0 \text { khi } x^{3}-x^{2}-x+1=0 \Rightarrow(x-1)^{2}(x+1)=0
$$

nghĩa là khi $x= \pm 1$.
Dưới đây cho bảng biến thiên và đồ thị :

x	$-\infty$	-1	$-\frac{1}{3}$	0	1	$+\infty$			
y^{\prime}		+	$\\|$	+	0	-	0	-	
y	$\mathrm{x}-\frac{1}{3}$	0	$\frac{2}{3} \sqrt[3]{4}$	2	0	+			

3) Hàm số $y=\frac{x^{4}+8}{x^{3}+1}$ xác định với mọi $x \neq-1$.

$$
y^{\prime}=\frac{x^{2}\left(x^{4}+4 x-24\right)}{-\left(x^{3}+1\right)^{2}}
$$

Dấu của y^{\prime} là dấu của $x^{4}+4 x-24$, và ta $c 6$:

$$
\begin{aligned}
x^{4}+4 x-24 & =x^{4}-16+4 x-8 \\
& =\left(x^{4}-16\right)+4(x-2) \\
& =(x-2)\left(x^{3}+2 x^{2}+4 x+12\right)
\end{aligned}
$$

127.0.0.1 dqunloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

Ta viết

$$
x^{4}+4 x-24=(x-2) g(x)
$$

với

$$
g(x)=x^{3}+2 x^{2}+4 x+12
$$

Vì $g(x)$ là một đa thức bậc ba và vì :

$$
g^{\prime}(x)=3 x^{2}+4 x+4>0, \forall x
$$

nên $\mathrm{g}(\mathrm{x})$ chỉ có một nghiệm thực duy nhất $\alpha: \mathrm{g}(\alpha)=0$, hơn nữa vì $\mathrm{g}(\mathrm{x})$ đồng biến và $\mathrm{g}(0)=12$ nên nhất thiết nghiệm $\alpha<0$, cụ thể, ta có

$$
g(-2,5)=-1,125<0 ; g(-2,4)=0,096>0
$$

do đó co thể lấy $\alpha \approx-2,4$, và có thể viết

$$
g(x)=x^{3}+2 x^{2}+4 x+12 \approx(x+2,4) \underbrace{\left(x^{2}-0,4 x+4,96\right)}_{>0} .
$$

Tóm lại, có thể viết

$$
\left(x^{4}+4 x-24\right) \approx(x-2)(x+2,4)\left(x^{2}-0,4 x+4,96\right)
$$

và dấu y' chính là dấu của tích số $(x-2)(x+2,4)$, suy ra :

$$
y_{\min }=y(2)=\frac{8}{3} ; y_{\max } \approx y(-2,4)=-3,2
$$

Bây giờ để ý rằng khi $\mathrm{x} \rightarrow-1 \Rightarrow \mathrm{y} \rightarrow \infty$, tiệm cận đứng là $\mathrm{x}=-1$, ngoài ra vì :

$$
y=\frac{x^{4}+8}{x^{3}+1}=x+\frac{8-x}{x^{3}+1}
$$

Suy ra khi $\mathrm{x} \rightarrow \infty$ thì $\mathrm{y}=\mathrm{x}$ là tiệm cận xiên. Dưới đây là bảng biên thiên và đồ thị :

x	$-\infty$		-2,4		-1	0		2		$+\infty$	
y^{\prime}		$+$	0	-	-		-	0	+		
y	$x>-$				$\\|^{+\infty}>8 / 3 \longrightarrow{ }^{8}$						

Hinh 13
4) Hàm số xác định với mọi x.

$$
\begin{aligned}
& y^{\prime}=\frac{1+2 x}{\left(1+x^{2}\right)^{\frac{3}{2}}} \\
& y^{\prime}=0 \mathrm{khi} 1+2 x=0 \Rightarrow x=-\frac{1}{2} \\
& y_{\min }=y\left(-\frac{1}{2}\right)=-\sqrt{5} . \\
& y^{\prime \prime}=-\frac{\sqrt{1+x^{2}}}{\left(1+x^{2}\right)^{3}}\left[4 x^{2}+3 x-2\right] \\
& y^{\prime \prime}=0 \operatorname{khi} 4 x^{2}+3 x-2=0 \Rightarrow x_{1}=-\frac{3+\sqrt{41}}{8} \approx-1,18 \\
& x_{2}=\frac{\sqrt{41}-3}{8} \approx 0,43 .
\end{aligned}
$$

127.0.0. 10fownloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
$\mathrm{x}=\mathrm{x}_{1}$ và $\mathrm{x}=\mathrm{X}_{2}$ là các điểm uốn của đồ thị :
$\mathrm{y}\left(\mathrm{x}_{1}\right) \approx-2,06 ; \mathrm{y}\left(\mathrm{x}_{2}\right) \approx-1,46$.
$\mathrm{y}=0$ khi $\mathrm{x}=2$.
Vi $y=\frac{x-2}{\sqrt{1+x^{2}}}=\frac{x-2}{|x| \sqrt{1+\frac{1}{x^{2}}}}$
nên $\lim _{x \rightarrow-\infty} y=-1 \Rightarrow$ tiệm cận ngang $y=-1$
và $\lim _{x \rightarrow+\infty} y=+1 \Rightarrow$ tiẹ̀m cạ́n ngang $y=1$.
Dưới đây là bảng biến thiên và đồ thị :

x	-		-1,18		-1/2		0		0,43		2		$+\infty$
y^{\prime}		-	1	-	0	+	1	+	1	+		+	
$y^{\prime \prime}$		-	0	+	\|	+	1	+	0	-		-	
y	$-1>-2,06>-\sqrt{5}>-2>-1,46>0>1$												

5) Hàm số xác định với mọi $x>0$

$$
y^{\prime}=\frac{1}{2} \cdot \frac{\sqrt{1+x}}{x \sqrt{x}}(2 x-1)
$$

$y^{\prime}=0$ khi $2 x-1=0 \Rightarrow x=\frac{1}{2}$.
$y_{\text {min }}=y\left(\frac{1}{2}\right)=\frac{3}{2} \sqrt{3} \approx 2,6$.
$y^{\prime \prime}=\frac{3 \sqrt{x}}{2 x^{3} \sqrt{1+x}}(x+1), y^{\prime \prime}>0, \quad \forall x>0$.
Có thể viết

$$
y=\frac{|1+x|^{\frac{3}{2}}}{\sqrt{x}}=(1+x) \sqrt{\frac{1+x}{x}}=(1+x)\left(1+\frac{1}{x}\right)^{\frac{1}{2}}
$$

Dùng khai triển hữu hạn của $\left(1+\frac{1}{x}\right)^{\frac{1}{2}}$, có :

$$
\left(1+\frac{1}{x}\right)^{\frac{1}{2}}=1+\frac{1}{2 x}+o\left(\frac{1}{x^{2}}\right)
$$

Do đó, có thẻ̛ viết

$$
y=(1+x)\left(1+\frac{1}{2 x}+o\left(\frac{1}{x^{2}}\right)\right)=1+x+\frac{1}{2}+o\left(\frac{1}{x}\right)
$$

Vậy khi $\mathrm{x} \rightarrow \infty$ thì $\mathrm{y} \rightarrow \mathrm{x}+\frac{3}{2}:$ tiệm cận xiên $\mathrm{y}=\mathrm{x}+\frac{3}{2}$.

Bảng biến thiên và đồ thị cho dưới đây :

6) Hàm só́ $y=1-x+\sqrt{\frac{x^{3}}{3+x}}$ xác định khi

Hinh 15

$$
x(3+x) \geq 0 ; x \neq-3
$$

Do đó miền xác định là $x<-3$ hoặc $x \geq 0$.

$$
y^{\prime}=-1-\frac{1}{2} \sqrt{\frac{x}{3+x}} \cdot \frac{9+2 x}{3+x} .
$$

Khi $\quad x<-3$:

$$
\begin{aligned}
& y^{\prime}=0 \text { khi } x=-4 . \\
& y^{\prime}>0 \text { với }-4<x<-3 \\
& y^{\prime}<0 \text { với } x<-4 \\
& y_{\min }=y(-4)=13 .
\end{aligned}
$$

Khi $x \geq 0$, phương trình $y^{\prime}=0$ vô nghiẹ̀m, do đó $y^{\prime}<0$ với $x>0$.
Giá trị lớn nhất của y khi $x \geq 0$ là $y(0)=1$.
Khi $x \rightarrow-3-0$ thì $y \rightarrow+\infty$.
Ngoài ra, có thể viết

$$
y=1-x+|x| \sqrt{\frac{x}{3+x}}=1-x+|x|\left(1-\frac{3}{3+x}\right)^{\frac{1}{2}}
$$

Dùng biểu thức khai triển hữu hạn của $\left(1-\frac{3}{3+x}\right)^{\frac{1}{2}}$ được :
oaded 60384.pdf at Tue Jul 31 08:30:34 IC† 2012

$$
\left(1-\frac{3}{3+x}\right)^{\frac{1}{2}}=1-\frac{1}{2} \cdot \frac{3}{3+x}+o\left(\frac{3}{3+x}\right)
$$

Do đó

$$
y=1-x+|x|-\frac{1}{2} \cdot \frac{3|x|}{3+x}+o\left(\frac{3}{3+x}\right)
$$

Suy ra :
Khi $x \rightarrow-\infty \Rightarrow y=1-x-x+\frac{3}{2}, y=-2 x+\frac{5}{2}$ là tiệm cận xiên.
Khi $\mathrm{x} \rightarrow+\infty \Rightarrow \mathrm{y}=1-\mathrm{x}+\mathrm{x}-\frac{3}{2}=-\frac{1}{2}, \mathrm{y}=-\frac{1}{2}$ là tiệm cận ngang. Khi $\mathrm{y}=0$ thì $\mathrm{x}=\frac{5+\sqrt{13}}{2} \approx 4,3$.
Dưới đây cho bảng biến thiên và đồ thị :

127.0.0.1 downloaded 60384.pdf at Tưe Jứ 31 08:30:34 ICT 2012.
19. 1) Để thấy ý nghĩa hình học của phương trình (đờng thời cũng là bản chất hình học của dường cong)

$$
r=a+b \cos \varphi
$$

ta có thể vẽ một đường tròn có đường kính là b, lấy một điểm trên đường tròn làm gốc cực O và vē trục cực OP đi qua tâm C của đường tròn (xem hình 17). Khi đó, hiển nhiên một điểm

Hinh 17 \mathbf{M}^{\prime} bất kì trên đường tròn đểu thoả $\mathbf{r}=\mathrm{b} \cos \varphi$, từ đó suy ra , muốn có điểm M của đồ thị chỉ cần nới OM^{\prime} kéo dài và lấy $\mathbf{M}^{\prime} \mathbf{M}=\mathbf{a} \leq \mathbf{b}$.

Ngoài ra, có thể thấy rằng hàm số $\mathrm{r}=\mathrm{a}+\mathrm{b} \cos \varphi(0<\mathrm{a} \leq \mathrm{b})$ xác định với $r \geq 0 ;|\varphi| \leq \alpha ;$ với $\alpha=\arccos \left(-\frac{b}{a}\right)$; đường cong kín, đồ thị đối xứng đới với trục cực, r đạt giá trị lớn nhất $\mathrm{r}=\mathrm{a}+\mathrm{b}$ khi $\varphi=0$ và $r=0$ khi $\varphi= \pm \alpha$.
2) Hàm só xác định khi $\cos 3 \varphi>0$ nghïa là khi

$$
-\frac{\pi}{2}+2 \mathrm{k} \pi<3 \varphi<\frac{\pi}{2}+2 \mathrm{k} \pi
$$

tức là khi

$$
|\varphi|<\frac{\pi}{6}
$$

hoạạc

$$
\frac{\pi}{2}<|\varphi|<\frac{5 \pi}{6}
$$

với chu kì $\mathrm{T}=\frac{2 \pi}{3}$.

r đạt giá trị nhỏ nhất khi $\varphi=0$, và $\varphi= \pm \frac{2 \pi}{3}$ và khi đó $\mathrm{r}=\mathrm{a}$.
Đồ thị có tiệm cận là các tia

$$
\varphi= \pm \frac{\pi}{6} ; \varphi= \pm \frac{\pi}{2} ; \varphi= \pm \frac{5 \pi}{6}
$$

Xem đồ thị ở hình 18.
19. 1) Xét hàm số $f(x):=x^{2}-\sin \pi x$

Để ý rằng $\mathrm{f}(0,75) \approx 0,5625-0,7071=-0,1446$

$$
f(0,85) \approx 0,7225-0,4540=0,2685
$$

Như thế khoảng $[0,75,0,85]$ chứa nghiệm của phương trình $x^{2}-\sin \pi x=0$.
Ngoài ra, đạo hàm $\mathrm{f}^{\prime}(\mathrm{x})$ không đổi dấu trong khoảng đóng. [0,75, 0,85] nên khoảng đó chỉ chứa một nghiệm của phương trình đã cho. Hơn nữa vì
và

$$
\begin{aligned}
& f^{\prime \prime}(x)=2+\pi^{2} \sin \pi x \\
& f^{\prime \prime}(0,85) \approx 6,4808>0
\end{aligned}
$$

nên ta chọn nghiệm ban đầu $x_{o}=0,85$.
Dùng công thức lặp :

$$
x_{n+1}=x_{n}-\frac{1}{f^{\prime}\left(x_{n}\right)} f\left(x_{n}\right)
$$

với

$$
x_{o}=0,85
$$

ta được

$$
\begin{aligned}
& x_{1} \approx 0,85-\frac{0,2685}{4,4992} \approx 0,7903 \\
& x_{2} \approx 0,7903-\frac{0,124}{4,0702} \approx 0,7598 \\
& f(0,7598) \approx-0,0482
\end{aligned}
$$

2) Xét hàm số $\mathrm{f}(\mathrm{x})=2 \lg \mathrm{x}-\frac{\mathrm{x}}{2}+1$. Để y rằng

$$
\begin{aligned}
& \mathrm{f}(0,38) \approx-0,0304<0 \\
& \mathrm{f}(0,40) \approx 0,4041
\end{aligned}
$$

và $\mathrm{f}^{\prime}(\mathrm{x})=\frac{2}{\mathrm{x}}-0,5$ không đổi dấu trong khoảng đóng $[0,38,0,40]$, do đó phương trình $2 \lg x-\frac{x}{2}+1=0$ có một nghiệm nằm trong $[0,38,0,40]$. Ngoài ra, vì $f^{\prime}(0,38)=-13,85<0$ nên chọn nghiệm ban đầu là $x_{o}=0,38$ và dừng công thức lặp

$$
x_{n+1}=x_{n}-\frac{1}{f^{\prime}\left(x_{n}\right)} f\left(x_{n}\right)
$$

ta có lần lượt :

$$
\begin{aligned}
& x_{1} \approx 0,38+\frac{0,0304}{4,7632} \approx 0,3864 \\
& x_{2} \approx 0,3864+\frac{0,0191}{4,6760} \approx 0,3905 \\
& x_{3} \approx 0,3905+\frac{0,0120}{4,6216} \approx 0,3947 \\
& x_{4} \approx 0,3947+\frac{0,0048}{4,5671} \approx 0,3958 \\
& x_{5} \approx 0,3958+\frac{0,0031}{4,5530} \approx 0,3965 \\
& x_{6} \approx 0,3965+\frac{0,0018}{4,5441} \approx 0,3969 \\
& x_{7} \approx 0,3969+\frac{0,0011}{4,5399} \approx 0,3971
\end{aligned}
$$

$$
\begin{aligned}
& x_{8} \approx 0,3971+\frac{0,0007}{4,5365} \approx 0,3973 \\
& x_{9} \approx 0,3973+\frac{0,0004}{4,5340} \approx 0,3974 \\
& x_{10} \approx 0,3974+\frac{0,0002}{4,5327} \approx 0,39745 \\
& x_{11} \approx 0,39745+\frac{0,0002}{4,5321} \approx 0,39754 .
\end{aligned}
$$

Vì $\quad f(0,39754) \approx 0,00006>0$
nên ta có thể dừng ở x_{11} và chọn nghiệm xấp xỉ là $x \approx 0,39754$.

Churong 6

NGUYÊN HÀM VÀ TÍCH PHÂN BẤT Đ!̣NH

A. Đề BÀI

1. Tính các tích phân

1) $\int x^{2}(5-x)^{4} d x$;
2) $\int\left(\frac{y}{x}+\frac{y^{2}}{x^{2}}+\frac{y^{3}}{x^{3}}\right) d x$;
3) $\int \frac{x+1}{\sqrt{x}} d x$;
4) $\int\left(1-\frac{1}{x^{2}}\right) \sqrt{x \sqrt{x}} d x$;
5) $\int \frac{2^{x+1}-5^{x-1}}{10^{x}} d x$;
6) $\int \frac{\mathrm{e}^{3 \mathrm{x}}+1}{\mathrm{e}^{x}+1} \mathrm{dx}$;
7) $\int \frac{\sqrt{1+x^{2}}-\sqrt{x^{2}-1}}{\sqrt{x^{4}-1}} d x$;
8) $\int \sqrt{1+\sin 2 x} d x,\left(0 \leq x \leq \frac{\pi}{2}\right)$;
9) $\int \frac{\mathrm{dx}}{5}$;
10) $\int \frac{\mathrm{dx}}{2-3 \mathrm{x}^{2}}$;
$(5 x-2)^{2}$
11) $\int \frac{\mathrm{dx}}{\sqrt{3 \mathrm{x}^{2}-2}}$;
12) $\int(\sin 5 x-\sin 5 y) d x$;
13) $\int \frac{d x}{\sin ^{2}\left(2 x+\frac{\pi}{4}\right)}$;
127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
14) $\int \frac{d x}{1+\cos x}$;
15) $\int \frac{d x}{1+\sin x}$;
16) $\int \frac{\mathrm{dx}}{\operatorname{ch}^{2} \frac{x}{2}}$;
17) $\int \frac{d x}{(1+x) \sqrt{x}}$;
18) $\int \frac{d x}{x \sqrt{x^{2}+1}}$;
19) $\int \frac{\mathrm{dx}}{\left(\mathrm{x}^{2}+1\right)^{\frac{3}{2}}}$;
20) $\int \frac{x d x}{\left(x^{2}-1\right)^{\frac{3}{2}}}$;
21) $\int \frac{e^{x}}{2+e^{x}} d x$;
22) $\int \frac{d x}{e^{x}+e^{-x}}$;
23) $\int \frac{d x}{\sin ^{2} x+2 \cos ^{2} x}$;
24) $\int \frac{\sin \mathrm{x}}{\sqrt{\cos ^{3} \mathrm{x}}} \mathrm{dx}$;
25) $\int \frac{x^{2}+1}{x^{4}+1} d x$;
26) $\int \frac{x^{\frac{n}{2}}}{\sqrt{1+x^{n+2}}} d x$;
27) $\int \frac{x d x}{(x+2)(x+5)}$;
28) $\int \frac{d x}{(x+a)^{2}(x+b)^{2}}$;
29) $\int \sin ^{2} x d x$;
30) $\int \sin x \sin (x+y) d x$;
31) $\int \cos \frac{x}{2} \cos \frac{x}{3} d x$.
2. Tính các tích phân
1) $\int \operatorname{arctg} x d x$;
2) $\int \frac{1+\cos x}{\sin x-1} d x$;
3) $\int \frac{d x}{\operatorname{tg}^{3} x}$;
4) $\int \sqrt{e^{x}-1} d x$;
5) $\int \sin ^{6} x \cos ^{4} x d x$;
6) $\int \frac{x+2}{\sqrt{x^{2}-5 x+6}} d x$;
127.0.0.1 downfoaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
7) $\int \frac{x d x}{\sqrt{x^{2}+x+2}}$;
8) $\int x \sqrt{-x^{2}+3 x-2} d x$;
9) $\int \sin ^{5} x \cos ^{3} x d x$;
10) $\int \frac{\mathrm{dx}}{\left(\mathrm{x}^{2}+2 \mathrm{x}+5\right)^{2}}$;
11) $\int \sin ^{n-1} x \sin (n+1) x d x$;
12) $\int \frac{x e^{\operatorname{arctg} x} d x}{\frac{3}{2}}$;
$\left(1+x^{2}\right)^{-2}$
13) $\int \frac{\mathrm{dx}}{1+\mathrm{x}^{3}}$;
14) $\int \frac{d x}{1+x^{6}}$;
15) $\int \max \left(1, x^{2}\right) d x$;
16) $\int\{|1+x|-|1-x|\} d x$.
3. Tính các tích phân :
1) $I_{n}:=\int \frac{d x}{\cos ^{n} \mathrm{x}}, \mathrm{n} \in \mathrm{N}$; tính $\mathrm{I}_{0}, \mathrm{I}_{1}, \mathrm{I}_{2}$ và lập công thức truy hồi để tính I_{n}.
2) $I_{n}:=\int x^{n} e^{x} d x$;
3) $\int \sqrt{\frac{x+1}{x-1}} d x$;
4) $\int e^{-2 x} \cos 3 x d x$;
5) $\int x^{2} \ln x d x$;
6) $\int \frac{\mathrm{dx}}{\sqrt{\mathrm{x}}+\sqrt[3]{\mathrm{x}}}$.

B. LỜI GIẢI

$$
\text { 1. 1) } \begin{aligned}
& \int \mathrm{x}^{2}(5-\mathrm{x})^{4} \mathrm{dx}=\int \mathrm{x}^{2}\left(5^{4}-4.5^{3} \mathrm{x}+6.5^{2} \mathrm{x}^{2}-4.5 \mathrm{x}^{3}+\mathrm{x}^{4}\right) \mathrm{dx} \\
& =\int\left(5^{4} \mathrm{x}^{2}-4.5^{3} \mathrm{x}^{3}+6.5^{2} \mathrm{x}^{4}-4.5 \mathrm{x}^{5}+\mathrm{x}^{6}\right) \mathrm{dx} \\
& =\frac{5^{4}}{3} \mathrm{x}^{3}-5^{3} \mathrm{x}^{4}+6.5 \mathrm{x}^{5}-4.5 \cdot \frac{\mathrm{x}^{6}}{6}+\frac{\mathrm{x}^{7}}{7}+C
\end{aligned}
$$

127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
2) $\int\left(\frac{y}{x}+\frac{y^{2}}{x^{2}}+\frac{y^{3}}{x^{3}}\right) d x=y \int \frac{d x}{x}+y^{2} \int \frac{d x}{x^{2}}+y^{3} \int \frac{d x}{x^{3}}$

$$
=y \ln |x|-\frac{y^{2}}{x}-\frac{y^{3}}{2 x^{2}}+C .
$$

3) $\int \frac{x+1}{\sqrt{x}} d x=\int\left(x^{\frac{1}{2}}+x^{-\frac{1}{2}}\right) d x=\frac{2}{3} x \sqrt{x}+2 \sqrt{x}+C$.
4) $\int\left(1-\frac{1}{x^{2}}\right) \sqrt{x \sqrt{x}} d x=\int\left(x^{\frac{3}{4}}-x^{-\frac{5}{4}}\right) d x=\frac{4\left(x^{2}+7\right)}{7 \sqrt[4]{x}}+C$.
5) $\int \frac{2^{x+1}-5^{x-1}}{10^{\mathrm{x}}} \mathrm{dx}=\int\left(2\left(\frac{1}{5}\right)^{\mathrm{x}}-\frac{1}{5}\left(\frac{1}{2}\right)^{\mathrm{x}}\right) \mathrm{dx}=$

$$
=-\frac{2}{\ln 5}\left(\frac{1}{5}\right)^{x}+\frac{1}{5 \ln 2}\left(\frac{1}{2}\right)^{x}+C .
$$

6) $\int \frac{e^{3 x}+1}{e^{x}+1} d x=\int \frac{\left(e^{x}+1\right)\left(e^{2 x}-e^{x}+1\right)}{1+e^{x}} d x$

$$
=\frac{1}{2} \mathrm{e}^{2 \mathrm{x}}-\mathrm{e}^{\mathrm{x}}+\mathrm{x}+\mathrm{C} .
$$

7) $\int \frac{\sqrt{1+\mathrm{x}^{2}}-\sqrt{\mathrm{x}^{2}-1}}{\sqrt{\mathrm{x}^{4}-1}} d x=\int\left(\frac{1}{\sqrt{\mathrm{x}^{2}-1}}-\frac{1}{\sqrt{\mathrm{x}^{2}+1}}\right) \mathrm{dx}=$

$$
=\ln \left|\frac{x+\sqrt{x^{2}-1}}{x+\sqrt{x^{2}+1}}\right|+C .
$$

8) Vì $1+\sin 2 x=\cos ^{2} x+2 \sin x \cos x+\sin ^{2} x=(\sin x+\cos x)^{2}$
nên $\quad I=\int \sqrt{(\sin x+\cos x)^{2}} d x=\int|\sin x+\cos x| d x$
127.0.0.1 dqyııloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

Vì $0 \leq x \leq \frac{\pi}{2}$ nên

$$
\begin{aligned}
I & =\int(\sin x+\cos x) d x=\sqrt{2} \int \sin \left(x+\frac{\pi}{4}\right) d x= \\
& =-\sqrt{2} \cos \left(x+\frac{\pi}{4}\right)+C
\end{aligned}
$$

9) $\int \frac{\mathrm{dx}}{(5 \mathrm{x}-2)^{\frac{5}{2}}}=\frac{1}{5} \int(5 \mathrm{x}-2)^{-\frac{5}{2}} \mathrm{~d}(5 \mathrm{x}-2)=-\frac{2}{15(5 \mathrm{x}-2)^{\frac{3}{2}}}+\mathrm{C}$.
10) $\int \frac{\mathrm{dx}}{2-3 \mathrm{x}^{2}}=\frac{1}{\sqrt{3}} \int \frac{\mathrm{~d}(\mathrm{x} \sqrt{3})}{2-(\sqrt{3} \mathrm{x})^{2}}=\frac{1}{2 \sqrt{6}} \ln \left|\frac{\sqrt{2}+\mathrm{x} \sqrt{3}}{\sqrt{2}-\mathrm{x} \sqrt{3}}\right|+$ C.
11) $\int \frac{d x}{\sqrt{2-3 x^{2}}}=\int \frac{d x}{\sqrt{2-(\sqrt{3} x)^{2}}}=$

$$
=\frac{1}{\sqrt{3}} \int \frac{d(\sqrt{3} x)}{\sqrt{2-(\sqrt{3} x)^{2}}}=\frac{1}{\sqrt{3}} \arcsin \left(x \sqrt{\frac{3}{2}}\right)+C
$$

12) $\int \frac{\mathrm{dx}}{\sqrt{3 \mathrm{x}^{2}-2}}=\frac{1}{\sqrt{3}} \int \frac{\mathrm{~d}(\sqrt{3} \mathrm{x})}{\sqrt{(\sqrt{3} \mathrm{x})^{2}-2}}=\frac{1}{\sqrt{3}} \ln \left|\mathrm{x} \sqrt{3}+\sqrt{3 \mathrm{x}^{2}-2}\right|+C$.
13) $\int(\sin 5 x-\sin 5 y) d x=-\frac{1}{5} \cos 5 x-x \sin 5 y+C$.
14) $\int \frac{d x}{\sin ^{2}\left(2 x+\frac{\pi}{4}\right)}=\frac{1}{2} \int \frac{d\left(2 x+\frac{\pi}{4}\right)}{\sin ^{2}\left(2 x+\frac{\pi}{4}\right)}=-\frac{1}{2} \operatorname{cotg}\left(2 x+\frac{\pi}{4}\right)+C$.
15) $\int \frac{d x}{1+\cos x}=\int \frac{d x}{2 \cos ^{2} \frac{x}{2}}=\int \frac{d\left(\frac{x}{2}\right)}{\cos ^{2} \frac{x}{2}}=\operatorname{tg} \frac{x}{2}+C$.
127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

$$
\begin{aligned}
& \text { 16) } \int \frac{d x}{1+\sin x}=\int \frac{d x}{1+\cos \left(\frac{\pi}{2}-x\right)}=-\int \frac{d\left(\frac{\pi}{2}-x\right)}{1+\cos \left(\frac{\pi}{2}-x\right)}= \\
& =-\operatorname{tg}\left(\frac{\pi}{4}-\frac{x}{2}\right)+C \text {. } \\
& \text { 17) } \int \frac{d x}{\text { ch }^{2} \frac{x}{2}}=2 \int \frac{d\left(\frac{x}{2}\right)}{c h^{2} \frac{x}{2}}=2 \operatorname{th}\left(\frac{x}{2}\right)+C \text {. } \\
& \text { 18) } \int \frac{d x}{(1+x) \sqrt{x}}=2 \int \frac{d(\sqrt{x})}{1+(\sqrt{x})^{2}}=2 \operatorname{arctg}(\sqrt{x})+C \text {. } \\
& \text { 19) } \int \frac{\mathrm{dx}}{\mathrm{x} \sqrt{\mathrm{x}^{2}+1}}=\int \frac{\frac{1}{\mathrm{x}^{2}} \mathrm{dx}}{\frac{1}{\mathrm{x}^{2}}\left(\mathrm{x} \sqrt{\mathrm{x}^{2}+1}\right)}=-\int \frac{\mathrm{d}\left(\frac{1}{\mathrm{x}}\right)}{\sqrt{\left(\frac{1}{\mathrm{x}}\right)^{2}+1}}= \\
& =-\ln \left|\frac{1+\sqrt{x^{2}+1}}{x}\right|+C \text {. }
\end{aligned}
$$

20) Đẻ̉ ý rằng $\left(\frac{x}{\sqrt{x^{2}+1}}\right)^{\prime}=\frac{1}{\left(x^{2}+1\right)^{\frac{3}{2}}}$ (xem bài tập so 16 ,
chương 4), có

$$
\begin{aligned}
& \int \frac{d x}{\left(x^{2}+1\right)^{\frac{3}{2}}}=\int d\left(\frac{x}{\sqrt{x^{2}+1}}\right)=\frac{x}{\sqrt{x^{2}+1}}+C . \\
& \text { 21) } \int \frac{x d x}{\left(x^{2}-1\right)^{\frac{3}{2}}}=\frac{1}{2} \int\left(x^{2}-1\right)^{-\frac{3}{2}} d\left(x^{2}-1\right)=-\frac{1}{\sqrt{x^{2}-1}}+C .
\end{aligned}
$$

127.0.0.1 dowploaded 60384.pdf at Tue Jul 31 08:30:34 ICT $2012{ }_{8 \pi}$
22) $\int \frac{\mathrm{e}^{\mathrm{x}}}{2+\mathrm{e}^{\mathrm{x}}} \mathrm{dx}=\int \frac{\mathrm{d}\left(2+\mathrm{e}^{\mathrm{x}}\right)}{2+\mathrm{e}^{\mathrm{x}}}=\ln \left(2+\mathrm{e}^{\mathrm{x}}\right)+C$.
23) $\int \frac{d x}{e^{x}+e^{-x}}=\int \frac{e^{x} d x}{1+\left(e^{x}\right)^{2}}=\int \frac{d\left(e^{x}\right)}{1+\left(e^{x}\right)^{2}}=\operatorname{arctg}\left(e^{x}\right)+C$.
24) $\int \frac{d x}{\sin ^{2} x+2 \cos ^{2} x}=\int \frac{d x}{2+\cos ^{2} x}=\int \frac{d(\operatorname{tg} x)}{2+\operatorname{tg}^{2} x}$

$$
=\frac{1}{\sqrt{2}} \operatorname{arctg}\left(\frac{\operatorname{tg} x}{\sqrt{2}}\right)+C
$$

25) $\int \frac{\sin x}{\sqrt{\cos ^{3} x}} d x=-\int(\cos x)^{-\frac{3}{2}} d(\cos x)=\frac{2}{\sqrt{\cos x}}+C$.
26) $\int \frac{x^{2}+1}{x^{4}+1} d x=\int \frac{\left(1+\frac{1}{x^{2}}\right) d x}{x^{2}+\frac{1}{x^{2}}}=\int \frac{\left(1+\frac{1}{x^{2}}\right) d x}{\left(x-\frac{1}{x}\right)^{2}+2}$

$$
=\int \frac{d\left(x-\frac{1}{x}\right)}{2+\left(x-\frac{1}{x}\right)^{2}}=\frac{1}{\sqrt{2}} \operatorname{arctg} \frac{1}{\sqrt{2}}\left(x-\frac{1}{x}\right)+C
$$

27) $\int \frac{\frac{n}{x^{2}}}{\sqrt{1+x^{n+2}}} d x=\frac{2}{n+2} \int \frac{d\left(x^{\frac{n+2}{2}}\right)}{\sqrt{1+\left(x^{(n+2) / 2)^{2}}\right.}}$

$$
=\frac{2}{n+2} \ln \left(x^{\frac{n+2}{2}}+\sqrt{1+x^{n+2}}\right)+C .
$$

127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
28) $\int \frac{x}{(x+2)(x+5)} d x=\int\left[\frac{5}{3(x+5)}-\frac{2}{3(x+2)}\right] d x$

Vi: $\frac{x}{(x+2)(x+5)}=\frac{A}{x+2}+\frac{B}{x+5} ; A=\frac{-2}{-2+5}=-\frac{2}{3}$;

$$
\mathrm{B}=\frac{-5}{-5+2}=\frac{5}{3}
$$

Cuói cùng

$$
\int \frac{x}{(x+2)(x+5)} d x=\frac{1}{3} \ln \left|\frac{(x+5)^{5}}{(x+2)^{2}}\right|+C .
$$

29) Để ý rằng : với $a \neq b$:

$$
\begin{aligned}
& \frac{1}{(x+a)^{2}(x+b)^{2}}=\left[\frac{1}{(x+a)(x+b)}\right]^{2}=\left[\frac{(x+b)-(x+a)}{(b-a)(x+a)(x+b)}\right]^{2} \\
= & \frac{1}{(b-a)^{2}}\left[\frac{1}{x+a}-\frac{1}{x+b}\right]^{2} \\
= & \frac{1}{(b-a)^{2}}\left\{\frac{1}{(x+a)^{2}}-2 \cdot \frac{1}{(x+a)(x+b)}+\frac{1}{(x+b)^{2}}\right\} \\
= & \frac{1}{(b-a)^{2}}\left\{\frac{1}{(x+a)^{2}}-2 \cdot \frac{1}{b-a}\left(\frac{1}{x+a}-\frac{1}{x+b}\right)+\frac{1}{(x+b)^{2}}\right\} .
\end{aligned}
$$

Do đó, với $\mathbf{a} \neq \mathbf{b}$:

$$
\begin{aligned}
& \int \frac{d x}{(x+a)^{2}(x+b)^{2}}= \\
= & \frac{1}{(b-a)^{2}} \int\left[\frac{1}{(x+a)^{2}}-\frac{2}{b-a}\left(\frac{1}{x+a}-\frac{1}{x+b}\right)+\frac{1}{(x+b)^{2}}\right] d x \\
= & -\frac{1}{(b-a)^{2}}\left[\frac{1}{x+a}+\frac{1}{x+b}+\frac{2}{b-a} \ln \left|\frac{x+a}{x+b}\right|\right]+C .
\end{aligned}
$$

127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

Với $\mathrm{a}=\mathrm{b}$ có

$$
\begin{aligned}
\int \frac{d x}{(x+a)^{2}(x+b)^{2}} & =\int \frac{d x}{(x+a)^{4}}=\int(x+a)^{-4} d(x+a)= \\
& =-\frac{1}{3(x+a)^{3}}+C .
\end{aligned}
$$

30) $\int \sin ^{2} x d x=\frac{1}{2} \int(1-\cos 2 x) d x=\frac{1}{2} x-\frac{1}{4} \sin 2 x+C$.
31) Dùng cóng thức lượng giác

$$
\sin a \sin b=\frac{1}{2}[\cos (a-b)-\cos (a+b)]
$$

có

$$
\begin{aligned}
& \int \sin x \sin (x+y) d x=\frac{1}{2} \int[\cos y-\cos (2 x+y)] d x= \\
= & \frac{1}{2} x \cos y-\frac{1}{2} \int \frac{1}{2} \cos (2 x+y) d(2 x+y) \\
= & \frac{1}{2} x \cos y-\frac{1}{4} \sin (2 x+y)+C .
\end{aligned}
$$

32) Dùng công thức lượng giác

$$
\cos a \cos b=\frac{1}{2}[\cos (a+b)+\cos (a-b)]
$$

có

$$
\begin{aligned}
\int \cos \frac{x}{2} \cos \frac{x}{3} d x & =\frac{1}{2} \int\left(\cos \frac{5 x}{6}+\cos \frac{x}{6}\right) d x= \\
& =\frac{3}{5} \sin \frac{5 x}{6}+3 \sin \frac{x}{6}+C .
\end{aligned}
$$

2. 3) Đặt $u=\operatorname{arctg} x, d v=d x$, có

$$
d u=\frac{1}{1+x^{2}} d x ; v=x
$$

127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

Do đó

$$
\begin{aligned}
\int \operatorname{arctg} x d x & =x \operatorname{arctg} x-\int \frac{x d x}{1+x^{2}} \\
& =x \operatorname{arctg} x-\frac{1}{2} \ln \left(1+x^{2}\right)+C
\end{aligned}
$$

2) Viết

$$
\frac{1+\cos x}{\sin x-1}=\frac{1}{\sin x-1}+\frac{\cos x}{\sin x-1}
$$

và để ý rằng

$$
d(\sin x-1)=\cos x d x ; \sin x=-\cos \left(x+\frac{\pi}{2}\right)
$$

ta có :

$$
\begin{aligned}
\int \frac{1+\cos x}{\sin x-1} d x & =\int \frac{d x}{\sin x-1}+\int \frac{\cos x}{\sin x-1} d x \\
& =-\int \frac{d x}{1+\cos \left(x+\frac{\pi}{2}\right)}+\int \frac{d(\sin x-1)}{\sin x-1} \\
& =\ln |\sin x-1|-\operatorname{tg}\left(\frac{x}{2}+\frac{\pi}{4}\right)+C
\end{aligned}
$$

3) Về nguyên tắc, với bài này có thẻ̉ thực hiện phép đổi biến $\operatorname{tgx}=\mathrm{t}$; nghĩa là viết

$$
\int \frac{d x}{\operatorname{tg}^{3} x}=\int \frac{d x}{\frac{\cos ^{2} x}{\operatorname{tg}^{3} x}}=\int \frac{d(\operatorname{tg} x)}{\cos ^{2} x} \operatorname{tg}^{3} x\left(1+\operatorname{tg}^{2} x\right) \quad \int \frac{d t}{t^{3}\left(1+t^{2}\right)}
$$

Mặt khác, ta có :

$$
\frac{1}{t^{3}\left(1+t^{2}\right)}=\frac{1+t^{2}-t^{2}}{t^{3}\left(1+t^{2}\right)}=\frac{1}{t^{3}}-\frac{1}{t\left(1+t^{2}\right)}
$$

127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
và

$$
\frac{1}{t\left(1+t^{2}\right)}=\frac{1+t^{2}-t^{2}}{\left(1+t^{2}\right) t}=\frac{1}{t}-\frac{t}{1+t^{2}}
$$

nghĩa là

$$
\begin{gathered}
\frac{1}{t^{3}\left(1+t^{2}\right)}=\frac{1}{t^{3}}-\frac{1}{t}+\frac{t}{1+t^{2}} \\
\int \frac{d t}{t^{3}\left(1+t^{2}\right)}=-\frac{1}{2 t^{2}}-\ln |t|+\frac{1}{2} \ln \left(1+t^{2}\right)+C
\end{gathered}
$$

do đó

$$
\int_{\operatorname{tg}^{3} x}^{d x}=-\frac{1}{2 \operatorname{tg}^{2} x}-\ln |\operatorname{tg} x|+\frac{1}{2} \ln \left(1+\operatorname{tg}^{2} x\right)+C
$$

Tuy nhiên, ta cūng có thể dùng phép đổi biến $\sin x=t$ nghĩa là viết

$$
\begin{aligned}
\int \frac{d x}{t^{3} x} & =\int \frac{\cos ^{3} x}{\sin ^{3} x} d x=\int \frac{\cos ^{2} x \cdot \cos x}{\sin ^{3} x} d x \\
& =\int \frac{1-\sin ^{2} x}{\sin ^{3} x} \cos x d x=\int \frac{\left(1-t^{2}\right)}{t^{3}} d t \\
& =\int \frac{d t}{t^{3}}-\int \frac{d t}{t}=-\frac{1}{2 t^{2}}-\ln |t|+C
\end{aligned}
$$

Vậy

$$
\int \frac{d x}{\operatorname{tg}^{3} x}=-\frac{1}{2 \sin ^{2} x}-\ln |\sin x|+C
$$

4) $\int \sqrt{e^{x}-1} d x=\int \frac{e^{x}-1}{\sqrt{e^{x}-1}} d x$

Thực hiện phếp đổi biến $\mathrm{u}^{2}+1=\mathrm{e}^{\mathrm{x}}$, dược

$$
\frac{2 u d u}{\mathbf{u}^{2}+1}=\mathrm{dx}
$$

127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
và $\int \sqrt{\mathrm{e}^{\mathrm{x}}-1} \mathrm{dx}=\int \frac{2 \mathrm{u}^{2}}{1+\mathrm{u}^{2}} \mathrm{du}=2 \int\left[1-\frac{1}{1+\mathrm{u}^{2}}\right] \mathrm{du}$

$$
=2[u-\operatorname{arctg} u]+C=2\left[\sqrt{\mathrm{e}^{\mathrm{x}}-1}-\operatorname{arctg} \sqrt{\mathrm{e}^{\mathrm{x}}-1}\right]+\mathrm{C} .
$$

5) Ta có:
$\sin ^{6} x \cos ^{4} x=\left(\sin ^{2} x \cos ^{2} x\right)^{2} \sin ^{2} x$

$$
\begin{aligned}
& =\frac{1}{16}\left(\sin ^{2} 2 x\right)^{2} \frac{(1-\cos 2 x)}{2} \\
& =\frac{1}{32}\left(\frac{1-\cos 4 x}{2}\right)^{2}(1-\cos 2 x) \\
& =\frac{1}{128}\left(1-2 \cos 4 x+\cos ^{2} 4 x\right)(1-\cos 2 x) \\
& =\frac{1}{256}(3-4 \cos 4 x+\cos 8 x)(1-\cos 2 x) \\
& =\frac{1}{256}\left[3-\cos 2 x-4 \cos 4 x+\frac{3}{2} \cos 6 x+\cos 8 x-\frac{1}{2} \cos 10 x\right]
\end{aligned}
$$

do đó

$$
\begin{aligned}
& \int \sin ^{6} x^{-\cos ^{4} x d x=} \\
&= \int\left[3-\cos 2 x-4 \cos 4 x+\frac{3}{2} \cos 6 x+\cos 8 x-\frac{1}{2} \cos 10 x\right] \frac{1}{256} d x \\
&= \frac{1}{256}\left[3 x-\frac{1}{2} \sin 2 x-\sin 4 x+\frac{1}{4} \sin 6 x+\frac{1}{8} \sin 8 x-\frac{1}{20} \sin 10 x\right]+C . \\
& \text { 6) } \int \frac{x+2}{\sqrt{x^{2}-5 x+6}} d x=\frac{1}{2} \int \frac{2 x-5}{\sqrt{x^{2}-5 x+6}} d x+\left(2+\frac{5}{2}\right) \int \frac{d x}{\sqrt{x^{2}-5 x+6}} \\
& \text { và } \int \frac{2 x-5}{\sqrt{x^{2}-5 x+6}} d x=\int t^{-\frac{1}{2}} d t\left(\text { vớ } t=x^{2}-5 x+6\right) \\
&=2 \sqrt{t}=2 \sqrt{x^{2}-5 x+6}
\end{aligned}
$$

127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

Ngoài ra, vì

$$
x^{2}-5 x+6=\left(x-\frac{5}{2}\right)^{2}+6-\left(\frac{5}{2}\right)^{2}=\left(x-\frac{5}{2}\right)^{2}-\frac{1}{4}
$$

nên :

$$
\begin{aligned}
& \int \frac{d x}{\sqrt{x^{2}-5 x+6}}=\int \frac{d y}{\sqrt{y^{2}-\frac{1}{4}}}\left(\text { với } y=x-\frac{5}{2}\right) \\
= & \ln \left|y+\sqrt{y^{2}-\frac{1}{4}}\right|+C=\ln \left|\left(x-\frac{5}{2}\right)+\sqrt{x^{2}-5 x+6}\right|+C .
\end{aligned}
$$

Cuối cùng, ta có

$$
\int \frac{x+2}{\sqrt{x^{2}-5 x+6}} d x=\sqrt{x^{2}-5 x+6}+\frac{9}{2} \ln \left|\left(x-\frac{5}{2}\right)+\sqrt{x^{2}-5 x+6}\right|+C
$$

7) $\int \frac{\mathrm{x}}{\sqrt{\mathrm{x}^{2}+\mathrm{x}+2}} \mathrm{dx}=\frac{1}{2} \int \frac{2 \mathrm{x}+1}{\sqrt{\mathrm{x}^{2}+\mathrm{x}+2}} \mathrm{dx}-\frac{1}{2} \int \frac{\mathrm{dx}}{\sqrt{\mathrm{x}^{2}+\mathrm{x}+2}}$
$=\sqrt{x^{2}+x+2}-\frac{1}{2} \int \frac{d x}{\sqrt{\left(x+\frac{1}{2}\right)^{2}+\frac{7}{4}}}=$

$$
=\sqrt{\mathrm{x}^{2}+\mathrm{x}+2}-\frac{1}{2} \ln \left|\left(\mathrm{x}+\frac{1}{2}\right)+\sqrt{\mathrm{x}^{2}+\mathrm{x}+2}\right|+\mathrm{C} .
$$

8) Có thể viết

$$
x \sqrt{-x^{2}+3 x-2}=-\frac{1}{2}(-2 x+3) \sqrt{-x^{2}+3 x-2}+\frac{3}{2} \sqrt{-x^{2}+3 x-2}
$$

do đó

$$
\begin{aligned}
& \int x \sqrt{-x^{2}+3 x-2} d x= \\
= & -\frac{1}{2} \int \sqrt{-x^{2}+3 x-2}(-2 x+3) d x+\frac{3}{2} \int \sqrt{-x^{2}+3 x-2} d x
\end{aligned}
$$

127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

Tích phấn thứ nhất của vế phải của hệ thức trên sẽ là $\int \mathrm{t}^{\frac{1}{2}} \mathrm{dt}=\frac{2}{3} \cdot \sqrt{\mathrm{t}^{3}}$, với $\mathrm{t}=-\mathrm{x}^{2}+3 \mathrm{x}-2$. Với tích phân thứ hai ta có :

$$
\begin{aligned}
& \int \sqrt{-x^{2}+3 x-2} d x=\int \sqrt{\frac{1}{4}-\left(x-\frac{3}{2}\right)^{2}} d x \\
= & \int \sqrt{\frac{1}{4}-\left(x-\frac{3}{2}\right)^{2}} d\left(x-\frac{3}{2}\right) \\
= & \frac{\left(x-\frac{3}{2}\right)}{2} \sqrt{-x^{2}+3 x-2}+\frac{1}{8} \arcsin \frac{x-\frac{3}{2}}{\frac{1}{2}}+C \\
= & \frac{(2 x-3)}{4} \sqrt{-x^{2}+3 x-2}+\frac{1}{8} \arcsin (2 x-3)+C .
\end{aligned}
$$

Cuối cùng, ta được :

$$
\begin{aligned}
& \int x \sqrt{-x^{2}+3 x-2} d x=-\frac{1}{3} \cdot \sqrt{\left(-x^{2}+3 x-2\right)^{3}}+ \\
& \qquad+\frac{3}{8}(2 x-3) \sqrt{-x^{2}+3 x-2}+\frac{3}{16} \arcsin (2 x-3)+C . \\
& \text { 9) } \int \sin ^{5} x \cos ^{3} x d x=\int \sin ^{5} x \cos ^{2} x \cos x d x= \\
& =\int \sin ^{5} x\left(1-\sin ^{2} x\right) \cos x d x=\int t^{5}\left(1-t^{2}\right) d t,(\text { vớ } t=\sin x) \\
& =\int\left(t^{5}-t^{7}\right) d t=\frac{1}{6} t^{6}-\frac{1}{8} t^{8}+C \\
& =\frac{1}{6} \sin ^{6} x-\frac{1}{8} \sin ^{8} x+C .
\end{aligned}
$$

127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
10) Vì $x^{2}+2 x+5=(x+1)^{2}+4$ nên

$$
\int \frac{d x}{\left(x^{2}+2 x+5\right)^{2}}=\int \frac{d x}{\left((x+1)^{2}+4\right)^{2}}=\int \frac{d t}{\left(t^{2}+4\right)^{2}}
$$

với $\mathrm{t}=\mathrm{x}+1$.
Bây giờ để y rằng có thể viết

$$
\frac{1}{\left(t^{2}+4\right)^{2}}=\frac{t^{2}+4-t^{2}}{4\left(t^{2}+4\right)^{2}}=\frac{1}{4}\left[\frac{1}{t^{2}+4}-\frac{t^{2}}{\left(t^{2}+4\right)^{2}}\right]
$$

do đó:

$$
\begin{aligned}
\int \frac{d t}{\left(t^{2}+4\right)^{2}} & =\frac{1}{4} \int\left[\frac{1}{t^{2}+4}-\frac{t^{2}}{\left(t^{2}+4\right)^{2}}\right] d t \\
& =\frac{1}{4} \cdot \frac{1}{2} \operatorname{arctg} \frac{t}{2}-\frac{1}{4} \int \frac{t^{2}}{\left(t^{2}+4\right)^{2}} d t .
\end{aligned}
$$

Gọi $J=\int \frac{t^{2}}{\left(t^{2}+4\right)^{2}} d t$, ta có :

$$
\begin{aligned}
\mathrm{J} & =\frac{1}{2} \int \mathrm{t} \cdot \frac{2 \mathrm{t}}{\left(\mathrm{t}^{2}+4\right)^{2}} \mathrm{dt}=\frac{1}{2} \int \mathrm{t} \cdot \frac{\mathrm{~d}\left(\mathrm{t}^{2}+4\right)}{\left(\mathrm{t}^{2}+4\right)^{2}}= \\
& =\frac{1}{2} \mathrm{t}(-1) \cdot \frac{1}{\mathrm{t}^{2}+4}+\frac{1}{2} \int \frac{\mathrm{dt}}{\mathrm{t}^{2}+4}=-\frac{1}{2} \frac{\mathrm{t}}{\mathrm{t}^{2}+4}+\frac{1}{2} \cdot \frac{1}{2} \operatorname{arctg} \frac{\mathrm{t}}{2}
\end{aligned}
$$

Vậy ta có :

$$
\begin{aligned}
\int \frac{d t}{\left(t^{2}+4\right)^{2}} & =\frac{1}{8} \operatorname{arctg} \frac{t}{2}-\frac{1}{4}\left[-\frac{1}{2} \frac{t}{\left(t^{2}+4\right)}+\frac{1}{4} \operatorname{arctg} \frac{t}{2}\right]= \\
& =\frac{1}{8} \cdot \frac{t}{\left(t^{2}+4\right)}+\frac{1}{16} \operatorname{arctg} \frac{t}{2}+C
\end{aligned}
$$

Cuối cùng, ta được

$$
\int \frac{d x}{\left(x^{2}+2 x+5\right)^{2}}=\frac{1}{8} \frac{(x+1)}{\left(x^{2}+2 x+5\right)}+\frac{1}{16} \operatorname{arctg} \frac{x+1}{2}+C .
$$

11) Vì $\sin (n+1) x=\sin n x \cos x+\cos n x \sin x$ nên
$\int \sin ^{n-1} x \sin (n+1) x d x=\int \sin n x \sin ^{n-1} x \cos x d x+\int \cos n x \sin ^{n} x d x$.
Bay giờ gọi $I=\int \sin n x \sin ^{n-1} x \cos x d x$ thì vì :

$$
\begin{aligned}
& d\left(\sin ^{n} x\right)=n \sin ^{n-1} x \cos x \text { nê }: \\
& I=\frac{1}{n} \int \sin n x d\left(\sin ^{n} x\right)=\frac{1}{n}\left[\sin ^{n} x \sin n x-n \int \cos n x \sin ^{n} x d x\right] \\
&=\frac{1}{n} \sin ^{n} x \sin n x-\int \cos n x \sin ^{n} x d x .
\end{aligned}
$$

Thế giá trị của I vào biểu thức đầu tiên ta được

$$
\int \sin ^{n-1} x \sin (n+1) x d x=\frac{1}{n} \sin ^{n} x \sin n x+C
$$

12) Thực hiện phép đởi biến $t=\operatorname{arctgx}$ ta được

$$
x=\operatorname{tg} t ; \frac{d x}{1+x^{2}}=d t ; \sqrt{1+x^{2}}=\sqrt{1+\operatorname{tg}^{2} t}=\frac{1}{\cos t}
$$

Do đó :

$$
\begin{aligned}
\int \frac{x e^{\operatorname{arctg} x} d x}{\left(1+x^{2}\right)^{\frac{3}{2}}} & =\int e^{t} \sin t d t=\int \sin t d\left(e^{t}\right)= \\
& =e^{t} \sin t-\int \cos t^{t} d t=e^{t} \sin t-\int \cos t d\left(e^{t}\right)= \\
& =e^{t} \sin t-e^{t} \cos t-\int e^{t} \sin t d t
\end{aligned}
$$

Suy ra:

$$
\int e^{t} \sin t d t=\frac{1}{2} e^{t}(\sin t-\cos t)+C, \text { nghia là }:
$$

127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

$$
\int \frac{x e^{\operatorname{arctg} x}}{\left(1+x^{2}\right)^{\frac{3}{2}}} d x=\frac{1}{2} e^{\operatorname{arctg} x} \cdot \frac{(x-1)}{\sqrt{1+x^{2}}}+C
$$

13) Để ý rằng có thể viết :

$$
\frac{1}{1+x^{3}}=\frac{1-x^{2}+x^{2}}{1+x^{3}}=\frac{x^{2}}{1+x^{3}}+\frac{1-x^{2}}{1+x^{3}}=\frac{x^{2}}{1+x^{3}}+\frac{1-x}{1-x+x^{2}}
$$

Do vậy

$$
\mathrm{I}=\int \frac{\mathrm{dx}}{1+\mathrm{x}^{3}}=\mathrm{I}_{1}+\mathrm{I}_{2}
$$

vơi $\quad I_{1}=\int \frac{x^{2}}{1+x^{3}} d x=\frac{1}{3} \int \frac{3 x^{2}}{1+x^{3}} d x=\frac{1}{3} \ln \left|1+x^{3}\right|+C$

$$
\begin{aligned}
I_{2} & =\int \frac{1-x}{x^{2}-x+1} d x=-\frac{1}{2} \int \frac{2 x-1}{x^{2}-x+1} d x+\frac{1}{2} \int \frac{d x}{x^{2}-x+1} \\
& =-\frac{1}{2} \ln \left(x^{2}-x+1\right)+\frac{1}{2} \int \frac{d\left(x-\frac{1}{2}\right)}{\left(x-\frac{1}{2}\right)^{2}+\frac{3}{4}} \\
& =-\frac{1}{2} \ln \left(x^{2}-x+1\right)+\frac{\sqrt{3}}{3} \operatorname{arctg} \frac{2 x-1}{\sqrt{3}}+C .
\end{aligned}
$$

- Cứi cùng :

$$
I=\frac{1}{3} \ln \left|1+x^{3}\right|-\frac{1}{2} \ln \left(x^{2}-x+1\right)+\frac{\sqrt{3}}{3} \operatorname{arctg} \frac{2 x-1}{\sqrt{3}}+C
$$

14) Có thể viét

$$
\begin{aligned}
\frac{1}{1+x^{6}} & =\frac{1}{2}\left[\frac{\left(x^{4}+1\right)-\left(x^{4}-1\right)}{1+\left(x^{2}\right)^{3}}\right] \\
& =\frac{1}{2}\left[\frac{x^{4}+1}{\left(x^{2}+1\right)\left(1-x^{2}+x^{4}\right)}-\frac{x^{4}-1}{\left(x^{2}+1\right)\left(1-x^{2}+x^{4}\right)}\right]
\end{aligned}
$$

127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

$$
\begin{aligned}
& =\frac{1}{2}\left[\frac{x^{4}-x^{2}+1+x^{2}}{\left(x^{2}+1\right)\left(1-x^{2}+x^{4}\right)}-\frac{x^{2}-1}{x^{4}-x^{2}+1}\right] \\
& =\frac{1}{2}\left[\frac{1}{1+x^{2}}+\frac{x^{2}}{1+\left(x^{3}\right)^{2}}-\frac{1-\frac{1}{x^{2}}}{x^{2}-1+\frac{1}{x^{2}}}\right] .
\end{aligned}
$$

Vậy

$$
\mathrm{I}=\int \frac{\mathrm{dx}}{1+\mathrm{x}^{6}}=\frac{1}{2}\left(\mathrm{I}_{1}+\mathrm{I}_{2}-\mathrm{I}_{3}\right)
$$

trong đó :

$$
\begin{aligned}
I_{1} & =\int \frac{d x}{1+x^{2}}=\operatorname{arctg} x+C_{1} \\
I_{2} & =\int \frac{x^{2} d x}{1+\left(x^{3}\right)^{2}}=\frac{1}{3} \int \frac{d\left(x^{3}\right)}{1+\left(x^{3}\right)^{2}}=\frac{1}{3} \operatorname{arctg}\left(x^{3}\right)+C_{2} \\
I_{3} & =\int \frac{1-\frac{1}{x^{2}}}{x^{2}-1+\frac{1}{x^{2}}} d x=\int \frac{d\left(x+\frac{1}{x}\right)}{\left(x+\frac{1}{x}\right)^{2}-3}= \\
& =\frac{1}{2 \sqrt{3}} \ln \left(\frac{x^{2}-\sqrt{3} x+1}{x^{2}+\sqrt{3} x+1}\right)+C_{3}
\end{aligned}
$$

Cuối cùng

$$
I=\frac{1}{2} \operatorname{arctg} x+\frac{1}{6} \operatorname{arctg}\left(x^{3}\right)-\frac{1}{4 \sqrt{3}} \ln \frac{x^{2}-\sqrt{3} x+1}{x^{2}+\sqrt{3} x+1}+C
$$

15) Vi $\max \left(1, x^{2}\right)= \begin{cases}1, & |x| \leq 1 \\ x^{2}, & |x|>1\end{cases}$
127.0.0.1 dqwnloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
nên $\max \left(1, x^{2}\right)$ là một hàm số liên tục với mọi $x \in \mathbf{R}$. Do đó, tồn tại nguyên hàm $\mathrm{I}(\mathrm{x})=\int \max \left(1, \mathrm{x}^{2}\right) \mathrm{dx}$ và cụ thể là

Vậy

$$
\begin{aligned}
& I(x)= \begin{cases}\int 1 . d x, & |x| \leq 1 \\
\int x^{2} d x, & |x|>1\end{cases} \\
& I(x)= \begin{cases}x+C_{1}, & |x| \leq 1 \\
\frac{x^{3}}{3}+C_{2}, & |x|>1\end{cases}
\end{aligned}
$$

Tuy nhiên, vì $\mathrm{I}(\mathrm{x})$ là một hàm liên tục nên phải có

$$
\begin{equation*}
\lim _{x \rightarrow-1}\left(x+C_{1}\right)=\lim _{x \rightarrow-1}\left(\frac{x^{3}}{3}+C_{2}\right) \tag{*}
\end{equation*}
$$

Điều kiện (${ }^{*}$) cho

$$
-1+C_{1}=-\frac{1}{3}+C_{2}
$$

từ đo, chọn $C_{1}=0$, suy ra $C_{2}=-\frac{2}{3}$.
Tương tự, điều kiện $\left({ }^{* *}\right)$ cho

$$
1+C_{1}^{\prime}=\frac{1}{3}+C_{2}^{\prime}
$$

và nếu chọn $C_{1}^{\prime}=0$, suy ra $\dot{C}_{2}=\frac{2}{3}$.
Kết hợp các trường hợp trên, có thể viết

$$
\mathrm{I}(\mathrm{x})=\left\{\begin{array}{l}
\mathrm{x},|\mathrm{x}| \leq 1 \\
\frac{x^{3}}{3}+\frac{2}{3} \operatorname{sgn}(\mathrm{x}),|x|>1
\end{array}\right.
$$

trong đó $\operatorname{sgn}(x)$ là hàm dấu của x (xem bài tập só 8 chương 2). 127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
16) Ta có

$$
|1+x|=\left\{\begin{array}{l}
1+x ; x \geq-1 \\
-1-x ; x<-1
\end{array} ;|1-x|=\left\{\begin{array}{l}
1-x ; x \leq 1 \\
-1+x ; x>1
\end{array}\right.\right.
$$

Suy ra bảng giá trị

x	$-\frac{1}{3}$			1	
$\|1+\mathrm{x}\|$	$-1-\mathrm{x}$	0	$1+\mathrm{x}$	1	$1+\mathrm{x}$
$\|1-\mathrm{x}\|$	$1-\mathrm{x}$	1	$1-\mathrm{x}$	0	$-1+\mathrm{x}$
$\|1+\mathrm{x}\|-\|1-\mathrm{x}\|$	-2	1	2 x	1	2

Vì $\lim _{x \rightarrow-1} 2 x=-2, \lim _{x \rightarrow 1} 2 x=2$
nên hàm số $f(x):=|1+x|-|1-x|$ liên tục với mọi $x \in R$ do đó $f(x)$ có nguyên hàm là $\mathrm{I}(\mathrm{x})$:

$$
I(x):=\int(|1+x|-|1-x|) d x=\left\{\begin{array}{l}
\int-2 d x ; x \leq-1 \\
\int 2 x d x ;-1<x \leq 1 \\
\int 2 \mathrm{dx} ; x>1
\end{array}\right.
$$

Suy ra :

$$
I(x)=\left\{\begin{array}{l}
-2 x+C_{1} ; x \leq-1 \\
x^{2}+C_{2} ;-1<x \leq 1 \\
2 x+C_{3} ; x>1
\end{array}\right.
$$

Mặt khác $\mathrm{I}(\mathrm{x})$ là một hàm liên tục nên phải có :

$$
\lim _{x \rightarrow-1}\left(-2 x+C_{1}\right)=\lim _{x \rightarrow-1}\left(x^{2}+C_{2}\right)
$$

và

$$
\lim _{x \rightarrow 1}\left(x^{2}+C_{2}^{\prime}\right)=\lim _{x \rightarrow 1}\left(2 x+C_{3}\right)
$$

Từ các điều kiện trên suy ra :

$$
C_{1}=C_{3}=0 ; C_{2}=1 ; C_{2}^{\prime}=1
$$

127.0.0.1 d\&8wnloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
và cuối cùng có thể biểu diễn $\mathrm{I}(\mathrm{x})$ dưới dạng :

$$
I(x):=\int(|1+x|-|1-x|) d x=\frac{1}{2}[(1+x)|1+x|+(1-x)|1-x|] .
$$

3. 4) $I_{0}=\int d x=x+C$.

$$
\begin{aligned}
I_{1} & =\int \frac{d x}{\cos x}=\int \frac{d x}{\sin \left(x+\frac{\pi}{2}\right)}=\int \frac{d x}{2 \sin \left(\frac{x}{2}+\frac{\pi}{4}\right) \cos \left(\frac{x}{2}+\frac{\pi}{4}\right)}= \\
& =\int \frac{\cos \left(\frac{x}{2}+\frac{\pi}{4}\right) d x}{2 \sin \left(\frac{x}{2}+\frac{\pi}{4}\right) \cos ^{2}\left(\frac{x}{2}+\frac{\pi}{4}\right)}=\int \frac{d\left(\operatorname{tg}\left(\frac{x}{2}+\frac{\pi}{4}\right)\right)}{\operatorname{tg}\left(\frac{x}{2}+\frac{\pi}{4}\right)} \\
& =\ln \left|\operatorname{tg}\left(\frac{x}{2}+\frac{\pi}{4}\right)\right|+C . \\
I_{2} & =\int \frac{d x}{\cos ^{2} x}=\int d(\operatorname{tg} x)=\operatorname{tg} x+C .
\end{aligned}
$$

Với $\mathrm{n} \geq 2$ có:

$$
\begin{aligned}
I_{n} & =\int \frac{d x}{\cos ^{n} x}=\int \frac{1}{\cos ^{n-2} x \cos ^{2} x}=\int \frac{1}{\cos ^{n-2} x} d(\operatorname{tg} x) \\
& =\frac{\operatorname{tg} x}{\cos ^{n-2} x}-\int \operatorname{tg} x\left(\cos ^{2-n} x\right)^{\prime} d x \\
& =\frac{\sin x}{\cos ^{n-1} x}-(n-2) \int \frac{\sin ^{2} x}{\cos ^{n} x} d x \\
& =\frac{\sin x}{\cos ^{n-1} x}-(n-2) \int \frac{1-\cos ^{2} x}{\cos ^{n} x} d x \\
& =\frac{\sin x}{\cos ^{n-1} x}-(n-2) \int\left[\frac{1}{\cos ^{n} x}-\frac{1}{\cos ^{n-2} x}\right] d x
\end{aligned}
$$

127.0.0. 1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
$I_{n}=\frac{\sin x}{\cos ^{n-1} x}-(n-2) I_{n}+(n-2) I_{n-2}$. Suy ra công thức truy hồi :

$$
I_{n}=\frac{1}{(n-1)} \cdot \frac{\sin x}{\cos ^{n-1} x}+\frac{n-2}{n-1} I_{n-2}
$$

2) $I_{n}=\int x^{n} e^{x} d x=\int x^{n} d\left(e^{x}\right)=x^{n} e^{x}-n \int x^{n-1} e^{x} d x$ tức là :

$$
I_{n}=x^{n} e^{x}-n I_{n-1}
$$

3) $\int \sqrt{\frac{x+1}{x-1}} d x=\int \frac{x+1}{\sqrt{x^{2}-1}} d x=\frac{1}{2} \int \frac{2 x}{\sqrt{x^{2}-1}} d x+\int \frac{d x}{\sqrt{x^{2}-1}}$

$$
=\sqrt{x^{2}-1}+\ln \left|x+\sqrt{x^{2}-1}\right|+C
$$

4) Có thể dùng cách tính tích phân từng phần thông thường để tính, chẳng hạn viết :

$$
\int e^{-2 x} \cos 3 x d x=-\frac{1}{2} \int \cos 3 x d\left(e^{-2 x}\right)
$$

rồi tiếp tục..., nhưng ở đây, do tính chất của hàm só $\mathrm{e}^{\mathrm{ax}} \operatorname{cosbx}$ nên ta có thể tính bằng cách đặt :

$$
\int e^{-2 x} \cos 3 x d x=e^{-2 x}(A \cos 3 x+B \sin 3 x)+C
$$

Đạo hàm cả hai vế đói với x, ta được

$$
\mathrm{e}^{-2 x} \cos 3 x=\mathrm{e}^{-2 x}[(-2 A+3 B) \cos 3 x-(3 A+2 B) \sin 3 x]
$$

Suy ra: $\left\{\begin{array}{r}-2 A+3 B=1 \\ 3 A+2 B=0\end{array}\right.$.
Giải hệ hai phương trình trên, tìm được

$$
\mathrm{A}=-\frac{2}{13} \text { và } \mathrm{B}=\frac{3}{13} .
$$

Vậy:

$$
\int e^{-2 x} \cos 3 x d x=\frac{e^{-2 x}}{13}[-2 \cos 3 x+3 \sin 3 x]+C
$$

127.0.0.138 ownloaded 60384.pdf at Tue Jul 31 08:30:34 ICŢтоаннфссств
5) Đặt $u=\ln x ; d u=\frac{1}{x} d x ; d v=x^{2} d x, v=\frac{1}{3} x^{3}$.

$$
\int \mathrm{x}^{2} \ln \mathrm{xdx}=\frac{1}{3} \mathrm{x}^{3} \ln \mathrm{x}-\frac{1}{3} \int \mathrm{x}^{2} \mathrm{dx}=\frac{1}{9} \mathrm{x}^{3}(3 \ln \mathrm{x}-1)+C .
$$

6) Đặt $t^{6}=x$, có $\sqrt{x}=t^{3} ; \sqrt[3]{x}=t^{2} ; d x=6 t^{5} d t$.

$$
\begin{aligned}
\int \frac{d x}{\sqrt{x}+\sqrt[3]{x}} & =\int \frac{6 t^{3}}{t+1} d t=6 \int \frac{t^{3}+1-1}{t+1} d t= \\
& =6 \int\left(t^{2}-t+1\right) d t-6 \int \frac{d t}{t+1} \\
& =6\left(\frac{t^{3}}{3}-\frac{t^{2}}{2}+t\right)-6 \ln (t+1)+C \\
& =2 \sqrt{x}-3 \sqrt[3]{x}+6 \sqrt[6]{x}-6 \ln (1+\sqrt[6]{x})+C
\end{aligned}
$$

Chutong 7
 TÍCH PHÂN XÁC ĐịNH

A. $\mathbf{~} \hat{\mathbf{E}} \mathbf{B A ̀ I}$

1. Dùng định nghīa tính các tích phân :
1) $\int_{1}^{2} e^{x} d x$;
2) $\int_{a}^{b} \frac{d x}{x^{2}}, 0<a<b$;
3) $\int_{0}^{1} a^{x} d x, a>0$.
2. Uớc lượng các tích phân :
1) $\int_{0}^{\frac{\pi}{2}} e^{\sin ^{2} x} d x$;
2) $\int_{10}^{18} \frac{\cos \mathrm{x}}{\sqrt{1+\mathrm{x}^{4}}} d x$
3. Tính các đạo hàm
1) $\frac{d}{d x} \int_{x}^{y} e^{t^{2}} d t$;
2) $\frac{d}{d y} \int_{x}^{y} e^{t^{2}} d t$;
3) $\frac{d}{d x} \int_{x^{2}}^{x^{3}} \frac{d t}{\sqrt{1+t^{4}}}$.
4. Dùng định nghỉa và cách tính tích phân xác định, tìm các giới hạn :
1) $\lim _{n \rightarrow \infty}\left[\frac{1}{n \alpha}+\frac{1}{n \alpha+\beta}+\frac{1}{n \alpha+2 \beta}+\ldots+\frac{1}{n \alpha+(n-1) \beta}\right],(\alpha>0, \beta>0)$
2) $\lim _{n \rightarrow \infty} \frac{1}{n}\left(\sqrt{1+\frac{1}{n}}+\sqrt{1+\frac{2}{n}}+\ldots+\sqrt{1+\frac{n}{n}}\right)$
127.0.0.1 downlıloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

$$
\text { 3) } \lim _{n \rightarrow \infty}\left(\frac{1}{n} \sqrt[n]{\frac{(2 n)!}{n!}}\right)
$$

5. Tìm các giới hạn :

$$
\text { 1) } \lim _{x \rightarrow+0} \frac{\int_{0}^{\sin x} \sqrt{\operatorname{tg} t} d t}{\int_{0}^{\operatorname{tg} x} \sqrt{\sin t} d t} ;
$$

$$
\int^{x}(\operatorname{arctgt})^{2} d t
$$

2) $\lim _{x \rightarrow \infty} \frac{0}{\sqrt{x^{2}+1}}$.
6. Có thể dùng công thức Newton - Leibnitz để tính các tích phân sau đay dược không ? Tại sao?
1) $\int_{-1}^{1} \frac{d x}{x^{2}}$;
2) $\int_{0}^{2} x \sqrt{1-x^{2}} d x$;
3) $\int_{0}^{\frac{\pi}{4}} \frac{d x}{\left(2+\operatorname{tg}^{2} x\right) \cos ^{2} x}$.
7. Tính các tích phân :
1) $\int_{\frac{1}{e}}^{e}|\ln x| d x$;
2) $\int_{0}^{2} f(x) d x$, với $f(x)= \begin{cases}x^{2}, & \text { khi } 0 \leq x \leq 1 \\ 2-x, & \text { khi } 1<x \leq 2\end{cases}$
3) $\int_{0}^{1} \sqrt{9-4 x^{2}} d x$;
4) $\int_{0}^{1}\left(x^{3}-2 x+5\right) e^{-\frac{x}{2}} d x$;
5) $\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{d x}{4 x^{2}+4 x+5}$;
6) $\int_{0}^{1} \frac{d x}{\sqrt{\left(1+x^{2}\right)^{3}}}$;
7) $\int_{0}^{\frac{\pi}{2}} \frac{d \theta}{3 \cos ^{2} \theta+4 \sin ^{2} \theta}$;
8) $\int_{0}^{\frac{\pi}{4}} \operatorname{tg}^{4} \theta d \theta$;
127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
9) $\int_{0}^{\frac{\pi}{2}} \ln \frac{1+\sin x}{1+\cos x} d x$;
10) $\int_{0}^{\frac{\pi}{2}} \cos ^{n} x \cos n x d x$.
8. Chứng minh rà̀ng nếu $\mathrm{f}(\mathrm{x})$ liên tục trễn $[0,1]$ thì :
1) $\int_{0}^{\frac{\pi}{2}} f(\sin x) d x=\int_{0}^{\frac{\pi}{2}} f(\cos x) d x$;
2) $\int_{0}^{\pi} x f(\sin x) d x=\frac{\pi}{2} \int_{0}^{\pi} f(\sin x) d x$.
9. Thực hiện phép đới biến $t:=x+\frac{1}{x}$ tính tích phan

$$
I:=\int_{\frac{1}{2}}^{2}\left(1+x-\frac{1}{x}\right) e^{x+\frac{1}{x}} d x .
$$

$\frac{\pi}{2}$
10. Từ công thức tính $\mathrm{J}_{\hat{\mathrm{h}}}:=\int_{0}^{2} \sin ^{n} \mathrm{xdx}$ (thí dụ (b) mục 7.6 , trang 265 sách đã dẫn) và từ bất đẳng thức hiển nhiên (?) :

$$
\int_{0}^{\frac{\pi}{2}} \sin ^{2 n+1} x d x<\int_{0}^{\frac{\pi}{2}} \sin ^{2 n} x d x<\int_{0}^{\frac{\pi}{2}} \sin ^{2 n-1} x d x
$$

chứng minh công thức Wallis :

$$
\frac{\pi}{2}=\lim _{n \rightarrow \infty}\left[\frac{(2 n)!!}{(2 n-1)!!}\right]^{2} \cdot \frac{1}{2 n+1}
$$

127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
11. Chứng minh rằng nếu $f(x)$ là một hàm só liên tục trên \mathbf{R}, tuần hoàn, có chu kì T, thì với mọi a, luôn có :

$$
\int_{a}^{a+T} f(x) d x=\int_{0}^{T} f(x) d x
$$

12. Tính tích phân :

$$
\int_{-1}^{3} \frac{f^{\prime}(x)}{1+f^{2}(x)} d x \text {, trong dó } f(x)=\frac{(x+1)^{2}(x-1)}{x^{3}(x-2)}
$$

13. Cho $f(x), g(x)$ lả hai hàm số khả tích trên $[a, b]$, giả sử $f^{2}(x)$, $\mathrm{g}^{2}(\mathrm{x})$ và $\mathrm{f}(\mathrm{x}) \cdot \mathrm{g}(\mathrm{x})$ cūng khả tích trên [a, b]. Chứng minh bất đẳng thức Cauchy - Schwartz (với $a<b$) :

$$
\left(\int_{a}^{b} f(x) g(x) d x\right)^{2} \leq\left(\int_{a}^{b} f^{2}(x) d x\right)\left(\int_{a}^{b} g^{2}(x) d x\right)
$$

14. Dùng công thức hình thang và công thức Simpson, tính gần đúng các tích phân sau :
1) $\int_{2}^{5} \frac{\mathrm{dx}}{\ln x}$, (chia $[2,5]$ thành 6 khoảng bằng nhau).
2) $\int_{0}^{\frac{\pi}{3}} \sqrt{\cos x} d x$, (chia $\left[0, \frac{\pi}{3}\right]$ thành 10 khoảng bằng nhau).
15. Tîm diện tích hình phẵng giới hạn bởi :
1) Đường cong $\mathrm{y}=\mathrm{x}^{2}(\mathrm{x} \geq 0)$ và các đường thẳng $\mathrm{x}=0, \mathrm{y}=4$
2) Đường parabôn $y=x^{2}+4$ và đường thẳng $x-y+4=0$

3) Đường tròn $x^{2}+y^{2}=4 x$ và parabôn $y^{2}=2 x$
4) Đường $r^{2}=\mathrm{a}^{2} \cos 2 \varphi$.
16. Tính thể tích của vật thể là phấn chung của hai hình trụ

$$
x^{2}+y^{2}=a^{2} \text { và } y^{2}+z^{2}=a^{2}(a>0)
$$

17. Tính thể tích vật thể giới hạn bởi mặt parabólôit $z=4-\mathrm{y}^{2}$, các mặt phẳng tọa độ và mặt phẳng $\mathrm{x}=\mathrm{a}$.
18. Tìm thể tích của vật thể tròn xoay tạo bởi hình phẳng giới hạn bởi các đường :
1) $y^{2}+x-4=0 ; x=0$ khi quay quanh truc $O y$
2) $x y=4 ; y=0 ; x=1 ; x=4$ khi quay quanh trục $O x$
3) $\mathrm{y}=\mathrm{x}^{2}, \mathrm{y}=4$ khi quay quanh đường thẳng $\mathrm{x}=-2$.
19. Tìm độ dài đường cong :
1) $9 y^{2}=4(3-x)^{3}$ gồm giữa các giao điểm của nó với trục Oy
2) $2 \mathrm{y}=\mathrm{x}^{2}-2$ gồm giữa các giao điếm của nó với trục Ox .
20. Tính diện tích mặt tròn xoay tạo bởi đường axtơrôit :

$$
x=\operatorname{acos}^{3} t ; y=a \sin ^{3} t, a>0
$$

khi quay quanh trục $O x$.
21. Xét sự hội tụ và tính (trong trường hợp hội tụ) các tích phân sau :

1) $\int_{-\infty}^{0} x e^{x} d x$;
2) $\int_{0}^{+\infty} \cos x d x$;
3) $\int_{-\infty}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{2}}$;
4) $\int_{0}^{2} \frac{x^{5}}{\sqrt{4-x^{2}}} d x$;
5) $\int_{0}^{1} \frac{\mathrm{dx}}{\sqrt{\mathrm{x}(1-\mathrm{x})}}$;
6) $\int_{0}^{2} \frac{d x}{(x-1)^{2}}$;
127.0.0.1 downtoaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
7) $\int_{0}^{1} x \ln ^{2} x d x$;
8) $\int_{-2}^{2} \frac{d x}{x^{2}-1}$.
22. Xét sự hội tụ của các tích phân sau :
1) $\int_{1}^{\infty} \frac{\ln (1+x)}{x} d x$;
2) $\int_{1}^{\infty} \frac{e^{-x^{2}}}{x^{2}} d x$;
3) $\int_{1}^{\infty}\left(1-\cos \frac{2}{x}\right) d x$;
4) $\int_{1}^{\infty} \frac{1+x^{2}}{x^{3}} d x$;
5) $\int_{0}^{1} \frac{d x}{e^{\sqrt[3]{x}}-1}$;
6) $\int_{0}^{1} \frac{d x}{\operatorname{tg} x-x}$;
7) $\int_{0}^{1} \frac{x^{2} d x}{\sqrt[3]{\left(1-x^{2}\right)^{5}}}$;
8) $\int_{0}^{1} \frac{\sqrt{x} d x}{e^{\sin x}-1}$.

B. LỜI GIẢI

1. 2) Xét hàm s of $f(x)=e^{x}, x \in[1,2]$; hàm số này liên tục trên [1, 2] do đó khả tích trên [1,2]. Chia đoạn [1,2] thành n đoạn bằng nhau bởi hệ phân điểm $\mathrm{x}_{\mathrm{o}}=1 ; \mathrm{x}_{1}=1+\frac{1}{\mathrm{n}}, \ldots, \mathrm{x}_{\mathrm{i}}=1+\frac{\mathrm{i}}{\mathrm{n}}$, $\mathrm{x}_{\mathrm{n}}=1+\frac{\mathrm{n}}{\mathrm{n}}=2 ; \mathrm{x}_{\mathrm{i}+1}-\mathrm{x}_{\mathrm{i}}=\frac{1}{\mathrm{n}}=\frac{2-1}{\mathrm{n}}=\Delta \mathrm{x}_{\mathrm{i}}$.

Chọn $\xi_{i}=x_{i}$, khi đó tởng tích phân là

$$
\sigma_{n}:=\sum_{i=1}^{n} \frac{1}{n} e^{1+\frac{i}{n}}=\frac{1}{n} e \sum_{i=1}^{n} e^{\frac{i}{n}}
$$

127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
và

$$
\lim _{n \rightarrow \infty} \sigma_{n}=\lim _{n \rightarrow \infty} \frac{e}{n} \sum_{i=1}^{n} e^{\frac{i}{n}}=e \lim _{n \rightarrow \infty} \frac{e-1}{\frac{e^{\frac{1}{n}}-1}{\frac{1}{n}}}
$$

Vi

$$
\lim _{n \rightarrow \infty} \frac{e^{\frac{1}{n}}-1}{\frac{1}{n}}=1
$$

nên

$$
\lim _{n \rightarrow \infty} \sigma_{n}=\int_{1}^{2} e^{x} d x=e^{2}-e=e(e-1)
$$

2) Xét hàm só $\mathrm{f}(\mathrm{x})=\frac{1}{\mathrm{x}^{2}}, \mathrm{x} \in[\mathrm{a}, \mathrm{b}]$, với $0<\mathrm{a}<\mathrm{b}$, hàm só này khả tích trên $[\mathrm{a}, \mathrm{b}]$. Chia $[\mathrm{a}, \mathrm{b}]$ thành n đoạn bằng nhau bởi hệ phấn điểm :

$$
\begin{gathered}
x_{0}=a, x_{1}=a+\Delta x_{1}, x_{2}=a+2 \Delta x_{2}, \ldots, x_{i}=a+i \Delta x_{i}, \ldots, \\
x_{n}=a+n \Delta x_{n}=a+n \cdot \frac{b-a}{n}=b
\end{gathered}
$$

trong đó $\Delta x_{1}=\Delta x_{2}=\ldots=\Delta x_{n}=\frac{b-a}{n}=\Delta x$.
Chọn $\xi_{i} \in\left[x_{i}, x_{i+1}\right]: \xi_{i}=\sqrt{x_{i} x_{i+1}}$.
Như thế

$$
f\left(\xi_{i}\right)=\frac{1}{x_{i} x_{i+1}}=\frac{1}{(a+i \Delta x)(a+(i+1) \Delta x)}
$$

Khi đó, tổng tích phân

Theo định nghĩa tích phân xác định, ta có :

$$
I=\int_{a}^{b} \frac{d x}{x^{2}}=\lim _{n \rightarrow \infty} \sigma_{n}=\lim _{\Delta x \rightarrow 0} \sum_{i=0}^{n-1} \frac{1}{(a+i \Delta x)(a+(i+1) \Delta x)} \Delta x .
$$

Vì có thể viết :

$$
\frac{1}{(a+i \Delta x)(a+(i+1) \Delta x)}=\frac{1}{\Delta x}\left(\frac{1}{a+i \Delta x}-\frac{1}{a+(i+1) \Delta x}\right)
$$

nên :

$$
\begin{aligned}
I & =\int_{a}^{b} \frac{d x}{x^{2}}=\lim _{\Delta x \rightarrow 0} \sum_{i=0}^{n-1}\left(\frac{1}{a+i \Delta x}-\frac{1}{a+(i+1) \Delta x}\right) \\
& =\frac{1}{a}-\frac{1}{b}=-\left(\frac{1}{b}-\frac{1}{a}\right) .
\end{aligned}
$$

3) Xét hàm số $f(x)=\mathrm{a}^{\mathrm{x}}, \mathrm{x} \in[0,1]$, hàm số này khả tích trên $[0,1]$. Chia đoạn $[0,1]$ thành n đoạn bằng nhau bởi hệ phân điểm :

$$
x_{0}=0, x_{1}=0+\Delta x_{1}, \ldots, x_{i}=0+i \Delta x_{i}, \ldots, x_{n}=0+n \Delta x_{n}
$$

với $\Delta \mathrm{x}_{1}=\Delta \mathrm{x}_{2}=\ldots=\Delta \mathrm{x}_{\mathrm{n}}=\frac{1-0}{\mathrm{n}}=\frac{1}{\mathrm{n}}$.
Chọn $\xi_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}$, khi đó $\mathrm{f}\left(\xi_{\mathrm{i}}\right)=\mathrm{a}^{\mathrm{x}_{\mathrm{i}}}$ và tổng tích phân σ_{n} là :

$$
\begin{gathered}
\sigma_{n}=\sum_{i=1}^{n} f\left(\xi_{i}\right) \Delta x_{i}=\sum_{i=1}^{n} a^{x_{i}} \Delta x_{i} \\
\lim _{n \rightarrow \infty} \sigma_{n}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} a^{\frac{i}{n}}=\lim _{n \rightarrow \infty} \frac{\left(a^{\frac{1}{n}}\right)^{n}-1}{\frac{a^{\frac{1}{n}}-1}{1}}
\end{gathered}
$$

127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 IC̃T 2012

Vì

$$
\lim _{n \rightarrow \infty} \frac{\frac{1}{a^{n}}-1}{\frac{1}{n}}=\ln a
$$

nên

$$
I=\lim _{n \rightarrow \infty} \sigma_{n}=\int_{0}^{1} a^{n} d x=\frac{a-1}{\ln a} .
$$

2. 3) Vì $0 \leq \sin ^{2} x \leq 1$ nên

$$
1 \leq e^{\sin ^{2} x} \leq e
$$

và

$$
\frac{\pi}{2} \leq \int_{0}^{\frac{\pi}{2}} e^{\sin ^{2} x} d x \leq e \frac{\pi}{2}
$$

2) Để ý rằng :

$$
\left|\frac{\cos x}{\sqrt{1+x^{4}}}\right| \leq \frac{1}{\sqrt{1+(10)^{4}}}<(10)^{-2} ; x \in[10,18]
$$

Do đó : $\quad\left|\int_{10}^{18} \frac{\cos x}{\sqrt{1+x^{4}}} \mathrm{dx}\right| \leq 10 .(10)^{-2}=(10)^{-1}$.
3. 1) $\frac{d}{d x} \int_{x}^{y} e^{t^{2}} d t=-\frac{d}{d x} \int_{y}^{x} e^{t^{2}} d t=-e^{x^{2}}$.
2) $\frac{d}{d y} \int_{x}^{y} e^{t^{2}} d t=e^{y^{2}}$.
3) $\frac{d}{d x} \int_{x^{2}}^{x^{3}} \frac{d t}{\sqrt{1+t^{4}}}=\frac{d}{d x}\left[\int_{x^{2}}^{a} \frac{d t}{\sqrt{1+t^{4}}}+\int_{a}^{x^{3}} \frac{d t}{\sqrt{1+t^{4}}}\right]$
127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
với a sao cho hàm số $\mathrm{f}(\mathrm{x})=\frac{1}{\sqrt{1+\mathrm{t}^{4}}}$ khả tích trong $\left[\mathrm{x}^{2}, \mathrm{a}\right]$ và $\left[\mathrm{a}, \mathrm{x}^{3}\right]$.
Khi đó :

$$
\frac{d}{d x} \int_{x^{2}}^{x^{3}} \frac{d t}{\sqrt{1+t^{4}}}=-\frac{d}{d x} \int_{a}^{x^{2}} \frac{d t}{\sqrt{1+t^{4}}}+\frac{d}{d x} \int_{a}^{x^{3}} \frac{d t}{\sqrt{1+t^{4}}}
$$

Mặt khác, ta có:

$$
\frac{d}{d x} \int_{a}^{x^{2}} \frac{d t}{\sqrt{1+t^{4}}}=\frac{d}{d\left(x^{2}\right)}\left(\int_{a}^{x^{2}} \frac{d t}{\sqrt{1+t^{4}}}\right)\left(x^{2}\right)_{x}^{\prime}=\frac{2 x}{\sqrt{1+\left(x^{2}\right)^{4}}}=\frac{2 x}{\sqrt{1+x^{8}}}
$$

và $\quad \frac{d}{d x} \int_{a}^{x^{3}} \frac{d t}{\sqrt{1+t^{4}}}=\frac{d}{d\left(x^{3}\right)}\left(\int_{a}^{x^{3}} \frac{d t}{\sqrt{1+t^{4}}}\right)\left(x^{3}\right)_{x}$,

$$
=\frac{3 x^{2}}{\sqrt{1+\left(x^{3}\right)^{4}}}=\frac{3 x^{2}}{\sqrt{1+x^{12}}}
$$

Vậ : $\quad \frac{d}{d x} \int_{x^{2}}^{x^{3}} \frac{d t}{\sqrt{1+t^{4}}}=-\frac{3 x^{2}}{\sqrt{1+x^{12}}}+\frac{2 x}{\sqrt{1+x^{8}}}$
4. 1) Có thể viét

$$
\begin{aligned}
\sigma_{n}: & =\frac{1}{n \alpha}+\frac{1}{n \alpha+\beta}+\frac{1}{n \alpha+2 \beta}+\ldots+\frac{1}{n \alpha+(n-1) \beta} \\
& =\frac{1}{n}\left[\frac{1}{\alpha}+\frac{1}{\alpha+\frac{\beta}{n}}+\frac{1}{\alpha+\frac{2 \beta}{n}}+\ldots+\frac{1}{\alpha+(n-1) \frac{\beta}{n}}\right]
\end{aligned}
$$

Biểu thức này gợi y xét hàm só:

$$
f(x):=\frac{1}{\alpha+\beta x}, x \in[0,1]
$$

127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

Khi đó, có:

$$
\sigma_{\mathrm{n}}=\sum_{\mathrm{i}=0}^{\mathrm{n}-1} \mathrm{f}\left(\xi_{\mathrm{i}}\right) \Delta \mathrm{x}_{\mathrm{i}}
$$

với $\xi_{\mathrm{i}}=0+\frac{\mathrm{i} \beta}{\mathrm{n}} ; \mathrm{i}=\overline{0, n-1}$.
$\Delta x_{i}=\Delta x_{0}=\ldots=\Delta x_{n-1}=\frac{1-0}{n}=\frac{1}{n}$. Mặt khác, theo giả thiết, $\alpha>0$;
$\beta>0$ nên hàm só́ $\mathrm{f}(\mathrm{x})=\frac{1}{\alpha+\beta \mathrm{x}}$ khả tích trên [0, 1], do đó, theo định nghĩa tích phân xác định, ta có :

$$
\lim _{n \rightarrow 0} \sigma_{n}=\int_{0}^{1} \frac{d x}{\alpha+\beta x}=\frac{1}{\beta} \ln \frac{\alpha+\beta}{\alpha}
$$

2) Đặt

$$
\sigma_{\mathrm{n}}=\frac{1}{\mathrm{n}}\left(\sqrt{1+\frac{1}{\mathrm{n}}}+\sqrt{1+\frac{2}{\mathrm{n}}}+\ldots+\sqrt{1+\frac{\mathrm{n}}{\mathrm{n}}}\right)
$$

và xét hàm só

$$
f(x)=\sqrt{1+x}, x \in[0,1]
$$

Khi đó có :

$$
\sigma_{\mathrm{n}}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right) \Delta \mathrm{x}_{\mathrm{i}}
$$

vớ $x_{i}=0+\frac{i}{n} ; \Delta x_{i}=\Delta x_{1}=\ldots=\Delta x_{n}=\frac{1-0}{n}=\frac{1}{n}$.
Hàm só $\mathrm{f}(\mathrm{x})=\sqrt{1+\mathrm{x}}$ khả tích trên $[0,1]$, do đó theo định nghĩa tích phân xác định, có :

$$
\lim _{n \rightarrow \infty} \sigma_{n}=\int_{0}^{1} \sqrt{1+x} d x=\frac{2}{3}(2 \sqrt{2}-1)
$$

127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
3) Đặt $\sigma_{\mathrm{n}}=\frac{1}{\mathrm{n}} \sqrt[n]{\frac{(2 \mathrm{n})!}{(\mathrm{n})!}}$ và có thể viết

$$
\sigma_{n}=\frac{1}{n} \sqrt[n]{(n+1)(n+2) \ldots(n+n)}=\sqrt[n]{\left(\frac{n+1}{n}\right)\left(\frac{n+2}{n}\right) \ldots\left(\frac{n+n}{n}\right)}
$$

$$
\sigma_{n}=\sqrt[n]{\prod_{k=1}^{n}\left(1+\frac{k}{n}\right)}
$$

Lấy lôga cơ số e của hai vế biểu thức của σ_{n} ta được :

$$
\begin{aligned}
& \ln \sigma_{n}=\frac{1}{n} \ln \left(\prod_{k=1}^{n}\left(1+\frac{k}{n}\right)\right) \\
& \ln \sigma_{n}=\frac{1}{n} \sum_{k=1}^{n} \ln \left(1+\frac{k}{n}\right) .
\end{aligned}
$$

Biểu thức cuối cùng này gợi ý xét hàm só́

$$
f(x):=\ln (1+x) ; x \in[0,1] .
$$

Hàm số $f(x)=\ln (1+x)$ khả túch trên $[0,1]$, do vậy nếu dùng hệ phân điểm đều trên đoạn $[0,1]$, với $x_{0}=0 ; x_{1}=0+\frac{1}{n}, \ldots$, $x_{k}=0+\frac{k}{n}, \ldots, x_{n}=0+\frac{n}{n}$, với $\Delta x_{1}=\Delta x_{2}=\ldots=\Delta x_{n}=\Delta x=\frac{1-0}{n}=\frac{1}{n}$, và chọn $f\left(\xi_{i}\right)=f\left(x_{i}\right)$ thì vế phải của biểu thức của $\ln \sigma_{n}$ chính là tởng tích phân, nghīa là :

$$
\lim _{n \rightarrow \infty}\left(\ln \sigma_{n}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \ln \left(1+\frac{k}{n}\right)=\int_{0}^{1} \ln (1+x) d x .
$$

Do đo :

$$
\lim _{n \rightarrow \infty}\left(\ln \sigma_{n}\right)=\ln \frac{4}{e} .
$$

127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

Cuối cùng, ta được :

$$
\lim _{n \rightarrow \infty} \sigma_{n}=\frac{4}{e}
$$

5.1) Ta có

$$
\lim _{x \rightarrow+0} \sqrt{\operatorname{tg} x}=\lim _{x \rightarrow+0} \sqrt{\sin x}=0
$$

Như thế, giới hạn cần tìm có dạng $\frac{0}{0}$, ta có thể dùng quy tắc De L'Hospital và được :

$$
\begin{aligned}
\lim _{x \rightarrow+0} \frac{\int_{0}^{\sin x} \sqrt{\operatorname{tg} t} d t}{\int_{0}^{\operatorname{tg} x} \sqrt{\sin t} d t} & \left.=\lim _{x \rightarrow+0} \frac{\left(\int_{0}^{\sin x} \sqrt{\operatorname{tg} t} d t\right.}{\left(\int_{0}^{\operatorname{tg} x} \sqrt{\sin t} d t\right.}\right) \\
& =\lim _{x \rightarrow+0} \frac{\sqrt{\operatorname{tg}(\sin x)}}{\sqrt{\sin (\operatorname{tg} x)}}=1
\end{aligned}
$$

2) Ta có :

$$
\begin{aligned}
& \lim _{x \rightarrow+\infty} \frac{\int_{0}^{x}(\operatorname{arctg} t)^{2} d t}{\sqrt{x^{2}+1}}=\lim _{x \rightarrow+\infty} \frac{\left(\int_{0}^{x}(\operatorname{arctg} t)^{2} d t\right)^{\prime}}{\left(\sqrt{x^{2}+1}\right)} \\
&=\lim _{x \rightarrow+\infty} \frac{(\operatorname{arctg} x)^{2}}{\frac{x}{\sqrt{x^{2}+1}}}=\lim _{x \rightarrow+\infty} \frac{(\operatorname{arctg} x)^{2}}{x} \\
&|x| \sqrt{1+1 / x^{2}}
\end{aligned}
$$

127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
6. 1) Hàm só $\mathrm{f}(\mathrm{x})=\frac{1}{\mathrm{x}^{2}} \rightarrow+\infty$ khi $\mathrm{x} \rightarrow 0$ do đó không dùng công thức Newton - Leibnitz được.
2) Vì $1-x^{2} \geq 0$ khi $|x| \leq 1$, do đó hàm $\mathrm{s} 6 \mathrm{f}(\mathrm{x})=\mathrm{x} \sqrt{1-\mathrm{x}^{2}}$ không xác định trong khoảng (1,2$]$ do đó không thể áp dụng công thức Newton - Leibnitz.
3) Hàm só $f(x)=\frac{1}{\left(2+\operatorname{tg}^{2} x\right) \cos ^{2} x}$ xác định, liên tục trên $\left[0, \frac{\pi}{4}\right]$ nên có thể áp dụng công thức Newton - Leibnitz.
7.1) Ta có

$$
|\ln x|= \begin{cases}\ln x, & \ln x \geq 0 \Leftrightarrow x \geq 1 \\ -\ln x, & \ln x<0 \Leftrightarrow x<1\end{cases}
$$

Do đó, có thể viết :

$$
\mathrm{I}=\int_{\frac{1}{\mathrm{e}}}^{\mathrm{e}}|\ln x| \mathrm{dx}=-\int_{\frac{1}{\mathrm{e}}}^{\mathrm{l}} \ln x d x+\int_{1}^{\mathrm{e}} \ln x d x .
$$

Vì $\int \ln x d x=x(\ln x-1)+C$ nên

$$
\mathrm{I}=-\left.\mathrm{x}(\ln \mathrm{x}-1)\right|_{\frac{1}{\mathrm{e}}} ^{1}+\left.\mathrm{x}(\ln \mathrm{x}-1)\right|_{1} ^{\mathrm{e}}=2\left(1-\frac{1}{\mathrm{e}}\right)
$$

2) Hàm só đã cho liên tục với mọi $x \in[0,2]$, do đó

$$
\begin{aligned}
& I=\int_{0}^{2} f(x) d x=\int_{0}^{1} x^{2} d x+\int_{1}^{2}(2-x) d x=\left.\frac{1}{3} x^{3}\right|_{0} ^{1}-\left.\frac{1}{2}(2-x)^{2}\right|_{1} ^{2}=\frac{5}{6} \\
& \text { 3) } \sqrt{9-4 x^{2}}=\sqrt{\left(\frac{9}{4} \sim x^{2}\right)} 4=2 \sqrt{\frac{9}{4}-x^{2}}
\end{aligned}
$$

127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

$$
\mathrm{I}=\int_{0}^{1} \sqrt{9-4 \mathrm{x}^{2}} \mathrm{dx}=2 \int_{0}^{\mathrm{t}} \sqrt{\frac{9}{4}-\mathrm{x}^{2}} \mathrm{dx}=\left.2\left(\frac{\mathrm{x}}{2} \sqrt{\frac{9}{4}-\mathrm{x}^{2}}+\frac{9}{8} \arcsin \frac{2 \mathrm{x}}{3}\right)\right|_{0} ^{1}
$$

- $=\frac{\sqrt{5}}{2}+\frac{9}{4} \arcsin \frac{2}{3}$.

4) Đế ý rằng, có thể viết

$$
\int\left(x^{3}-2 x+3\right) e^{-\frac{x}{2}} d x=e^{-\frac{x}{2}}\left(A x^{3}+B x^{2}+C x+D\right)+K
$$

trong đó các hằng sớ $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ thoả điểu kiện

$$
\left(x^{3}-2 x+3\right) e^{-\frac{x}{2}}=\left(e^{-\frac{x}{2}}\left(A x^{3}+B x^{2}+C x+D\right)\right)^{\prime}
$$

Nghīa là phải co :

$$
\begin{aligned}
& -\frac{1}{2} A=1 \Rightarrow A=-2 ; 2 B-\frac{C}{2}=-2 \Rightarrow C=-44 \\
& 3 A-\frac{B}{2}=0 \Rightarrow B=-12 ; C-\frac{D}{2}=5 \Rightarrow D=-98 .
\end{aligned}
$$

Cuới cùng, được :

$$
\int\left(x^{3}-2 x+3\right) e^{-\frac{x}{2}} d x=e^{-\frac{x}{2}}\left(-2 x^{3}-12 x^{2}-44 x-98\right)+K
$$

Do đó:

$$
\int_{0}^{1}\left(x^{3}-2 x+3\right) e^{-\frac{x}{2}} d x=\left.e^{-\frac{x}{2}}\left(-2 x^{3}-12 x^{-2}-44 x-98\right)\right|_{0} ^{1}=\frac{-58}{\sqrt{e}}
$$

$$
\text { 5) } \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{d x}{4 x^{2}+4 x+5}=\frac{1}{4} \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{d x}{x^{2}+x+\frac{5}{4}}=\frac{1}{4} \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{d x}{\left(x+\frac{1}{2}\right)^{2}+1}
$$

$$
=\left.\frac{1}{4} \operatorname{arctg}\left(x+\frac{1}{2}\right)\right|_{-\frac{1}{2}} ^{\frac{1}{2}}=\frac{\pi}{16} .
$$

127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
6) $\int_{0}^{1} \frac{d x}{\sqrt{\left(1+x^{2}\right)^{3}}}=\int_{0}^{1} \frac{d x}{\left(1+x^{2}\right) \sqrt{1+x^{2}}}(x=\operatorname{tg} t)$ $=\int_{0}^{\frac{\pi}{4}} \cos t d t=\left.\sin t\right|_{0} ^{\frac{\pi}{4}}=\frac{\sqrt{2}}{2}$.

$$
\text { 7) } \begin{aligned}
\int_{0}^{\frac{\pi}{2}} \frac{d \theta}{3 \cos ^{2} \theta+4 \sin ^{2} \theta} & =\int_{0}^{\infty} \frac{d t}{3+4 t^{2}} \quad(t=\operatorname{tg} \theta) \\
& =\left.\lim _{A \rightarrow+\infty} \frac{1}{4} \cdot \frac{2}{\sqrt{3}} \operatorname{arctg} \frac{2 t}{\sqrt{3}}\right|_{0} ^{A}=\frac{\pi}{4 \sqrt{3}} .
\end{aligned}
$$

$$
\text { 8) } \int_{0}^{\frac{\pi}{4}} \operatorname{tg}^{4} \theta d \theta=\int_{0}^{\frac{\pi}{4}} \operatorname{tg}^{2} \theta \sin ^{2} \theta \frac{d \theta}{\cos ^{2} \theta}
$$

$$
=\int_{0}^{\frac{\pi}{4}} \operatorname{tg}^{2} \theta\left(1-\cos ^{2} \theta\right) d(\operatorname{tg} \theta)
$$

$$
=\int_{0}^{1} \mathrm{t}^{2}\left(1-\frac{1}{1+\mathrm{t}^{2}}\right) \mathrm{dt}(\mathrm{t}:=\operatorname{tg} \theta)
$$

$$
=\int_{0}^{1}\left(\mathrm{t}^{2}-1+\frac{1}{1+\mathrm{t}^{2}}\right) \mathrm{dt}=\left.\left(\frac{1}{3} \mathrm{t}^{3}-\mathrm{t}+\operatorname{arctgt}\right)\right|_{0} ^{1}
$$

$$
=\frac{\pi}{4}-\frac{2}{3} .
$$

9) $\int_{0}^{\frac{\pi}{2}} \ln \frac{1+\sin x}{1+\cos x} d x=\int_{0}^{\frac{\pi}{2}} \ln (1+\sin x) d x-\int_{0}^{\frac{\pi}{2}} \ln (1+\cos x) d x$.

Đặt $J=\int_{0}^{\frac{\pi}{2}} \ln (1+\cos x) d t$ và đặt $x=\frac{\pi}{2}-t$
thì sẽ có

$$
J=-\int_{\frac{\pi}{2}}^{0} \ln (1+\sin t) d t=\int_{0}^{\frac{\pi}{2}} \ln (1+\sin t) d t=\int_{0}^{\frac{\pi}{2}} \ln (1+\cos x) d x .
$$

Cuối cùng

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{2}} \ln \frac{1+\sin x}{1+\cos x} d x=\int_{0}^{\frac{\pi}{2}} \ln (1+\sin x) d x-\int_{0}^{\frac{\pi}{2}} \ln (1+\sin x) d x=0 \\
&=\int_{0}^{\frac{\pi}{2}} \cos ^{n} x \cos n x d x=\int_{0}^{\frac{\pi}{2}} \cos ^{n} x \frac{1}{n} d(\sin n x) \\
&=\left.\frac{1}{n} \cos ^{n} x \sin n x\right|_{0} ^{\frac{\pi}{2}}+\int_{0}^{\frac{\pi}{2}} \cos ^{n-1} x \sin x \sin n x d x \\
&=\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \cos ^{n-1} x[\cos (n-1) x-\cos (n+1) x] d x \\
&=\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \cos ^{n-1} x \cos (n-1) x d x-\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \cos ^{n-1} x \cos (n+1) x d x \\
&=\frac{1}{2} I_{n-1}-\frac{1}{2} \int_{0}^{2} \cos n-1 x[\cos n x \cos x-\sin n x \sin x] d x
\end{aligned}
$$

127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

Xét tích phân :

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{2}} \cos ^{n-1} x[\cos n x \cos x-\sin n x \sin x] d x= \\
= & \int_{0}^{\frac{\pi}{2}} \cos ^{n} x \cos n x d x-\int_{0}^{\frac{\pi}{2}} \cos ^{n-1} x \sin x \sin n x d x=I_{n}-I_{n}=0 .
\end{aligned}
$$

Vậy, ta có

$$
\begin{aligned}
& I_{n}=\frac{1}{2} I_{n-1}, \text { suy ra } \\
& I_{n-1}=\frac{1}{2} I_{n-2} \\
& \vdots \\
& I_{1}=\frac{1}{2} I_{0} \\
& I_{0}=\int_{0}^{\frac{\pi}{2}} \mathrm{dx}=\frac{\pi}{2}
\end{aligned}
$$

Nhân vế với vế $(\mathrm{n}+1)$ đẳng thức trên suy ra :

$$
I_{n}=\int_{0}^{\frac{\pi}{2}} \cos ^{n} x \cos n x d x=\frac{1}{2^{n+1}} \cdot \pi
$$

8. 9) Để ý rằng với $x \in\left[0, \frac{\pi}{2}\right]$ thì $\sin x$ và $\cos x$ gồm giữa 0 và 1 do theo giả thiết $f(x)$ liên tục trong $[0,1]$ suy ra $f(\sin x)$ và $f(c o$ liên tục với $x \in\left[0, \frac{\pi}{2}\right]$, và $f(\sin x), f(\cos x)$ khả tích trên $\left[0, \frac{7}{2}\right.$ Hơn nữa, ta có :
127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{2}} f(\sin x) d x & =-\int_{\frac{\pi}{2}}^{0} f\left(\sin \left(\frac{\pi}{2}-t\right)\right) d t \quad\left(x=\frac{\pi}{2}-t\right) \\
& =\int_{0}^{\frac{\pi}{2}} f(\cos t) d t=\int_{0}^{\frac{\pi}{2}} f(\cos x) d x .
\end{aligned}
$$

2) Thực hiện phép đởi biến $x=\pi-t$, có :

$$
\int_{0}^{\pi} x f(\sin x) d x=-\int_{\pi}^{0}(\pi-t) f(\sin (\pi-t)) d t=
$$

$$
\begin{aligned}
& =\int_{0}^{\pi}(\pi-t) f(\sin t) d t=\int_{0}^{\pi} \pi f(\sin t) d t-\int_{0}^{\pi} t f(\sin t) d t= \\
& =\int_{0}^{\pi} \pi f(\sin x) d x-\int_{0}^{\pi} x f(\sin x) d x .
\end{aligned}
$$

Chuyển vế, ta được :

Suy ra:

$$
\begin{aligned}
& 2 \int_{0}^{\pi} x f(\sin x) d x=\pi \int_{0}^{\pi} f(\sin x) d x \\
& \int_{0}^{\pi} x f(\sin x) d x=\frac{\pi}{2} \int_{0}^{\pi} f(\sin x) d x
\end{aligned}
$$

9. Trước hết, để ý rằng khi x tăng từ $\frac{1}{2}$ đến 2 (khoảng lấy tích phân đơi với x là $\left[\frac{1}{2}, 2\right]$) thì $t:=x+\frac{1}{x}$ không biến thiên đơn điệu: $x=\frac{1}{2}$ thì $t=\frac{5}{2} ; x=2, t=\frac{5}{2}$. Ngoài ra, xét sự biến thiên của t theo x, ta tháy
127.0.0.1 downlq马ged 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

$$
\frac{\mathrm{dt}}{\mathrm{dx}}=1-\frac{1}{\mathrm{x}^{2}}=\frac{\mathrm{x}^{2}-1}{\mathrm{x}^{2}}
$$

Suy ra $\frac{\mathrm{dt}}{\mathrm{dx}}<0$ khi $\mathrm{x} \in\left[\frac{1}{2}, 1\right]$

$$
\frac{\mathrm{dt}}{\mathrm{dx}}>0 \text { khi } \mathrm{x} \in[1,2]
$$

$\frac{\mathrm{dt}}{\mathrm{dx}}=0$ khi $\mathrm{x}=1$. (Không lấy giá trị $\mathrm{x}=-1$ vì giá trị này không nằm trong khoảng lấy tích phân đơi với x. Như thế, ta có :
Với x tãng từ $\frac{1}{2}$ đến $1, t$ giảm từ $\frac{5}{2}$ đến 2 .
Với x tăng từ 1 đến $2, t$ tăng từ 2 đến $\frac{5}{2}$.
Do đó, ta có thể phân tích tích phân I cần tính thành hai tích phân ưng với hai khoảng biến thiên đơn điệu của t :

$$
I=\int_{\frac{1}{2}}^{2}\left(1+x-\frac{1}{x}\right) e^{x+\frac{1}{x}} d x=I_{1}+I_{2}
$$

trong đó :

$$
\begin{aligned}
& I_{1}=\int_{\frac{1}{2}}^{1}\left(1+x-\frac{1}{x}\right) e^{x+\frac{1}{x}} d x \\
& I_{2}=\int_{1}^{2}\left(1+x-\frac{1}{x}\right) e^{x+\frac{1}{x}} d x .
\end{aligned}
$$

Bây giờ, với mỗi tích phân $\mathrm{I}_{1}, \mathrm{I}_{2}$ ta có thể xử lí theo quy tấc đởi biến trong phép tính tích phân xác định thông thường và ta có : từ biểu thức $\mathrm{t}=\mathrm{x}+\frac{1}{\mathrm{x}}$ suy ra :

Với $\mathrm{x} \in\left[\frac{1}{2}, 1\right]$ thì

$$
\left.\begin{array}{c}
1+x-\frac{1}{x}=t+\frac{t-\sqrt{t^{2}-4}-4}{t-\sqrt{t^{2}-4}} \\
I_{1}=\int_{\frac{5}{2}}^{2}\left(t+\frac{t-\sqrt{t^{2}-4}-4}{t-\sqrt{t^{2}-4}}\right)\left(\frac{\sqrt{t^{2}-4-t}}{2 \sqrt{t^{2}-4}-t}\right. \\
2 \sqrt{t^{2}-4}
\end{array}\right) e^{t} d t .
$$

Với $x \in[1,2]$ thì :

$$
\begin{gathered}
1+x-\frac{1}{x}=t+\frac{t+\sqrt{t^{2}-4}-4}{t+\sqrt{t^{2}-4}} ; . d x=\frac{\sqrt{t^{2}-4}+t}{2 \sqrt{t^{2}-4}} d t \\
I_{2}=\int_{2}^{\frac{5}{2}}\left(t+\frac{t+\sqrt{t^{2}-4}-4}{t+\sqrt{t^{2}-4}}\right)\left(\frac{\sqrt{t^{2}-4}+t}{2 \sqrt{t^{2}-4}}\right) e^{t} d t
\end{gathered}
$$

Do đó :

$$
\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}=\int_{2}^{\frac{5}{2}} \mathrm{te}^{t} \mathrm{dt}=\left.\mathrm{e}^{\mathrm{t}}(\mathrm{t}-1)\right|_{2} ^{\frac{5}{2}}=\frac{3}{2} \mathrm{e}^{\frac{5}{2}}-\mathrm{e}^{2}
$$

10. Với $x \in\left[0, \frac{\pi}{2}\right]$ thì $0 \leq \sin x \leq 1$; do đó :

$$
\sin ^{2 n+1} x<\sin ^{2 n} x<\sin ^{2 n-1} x
$$

127.0.0.1 downloloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

Suy ra:

$$
\mathbf{J}_{2 n+1}<J_{2 n}<J_{2 n-1}
$$

với $\mathrm{J}_{\mathrm{n}}:=\int_{0}^{\frac{\pi}{2}} \sin ^{\mathrm{n}} x \mathrm{dx}$. Mặt khác, theo công thức ở thí dụ (b) mục 7.6 trang 265 sách đả dẵn, ta có: $J_{2 n+1}=\frac{2 n!!}{(2 n+1)!!}, J_{2 n}=\frac{(2 n-1)!!}{2 n!!} \cdot \frac{\pi}{2}$.
Do đó, từ bất đẳng thức kép trên suy ra

$$
\begin{aligned}
& \frac{2 n!!}{(2 n+1)!!}<\frac{(2 n-1)!!}{2 n!!} \cdot \frac{\pi}{2}<\frac{(2 n-2)!!}{(2 n-1)!!} \text { tức là : } \\
& {\left[\frac{2 n!!}{(2 n-1)!!}\right]^{2} \cdot \frac{1}{2 n+1}<\frac{\pi}{2}<\left[\frac{2 n!!}{(2 n-1)!!}\right]^{2} \cdot \frac{1}{2 n}}
\end{aligned}
$$

Suy ra hiệu giữa hai biểu thức bên phải và bên trái :

$$
\frac{1}{(2 n+1)(2 n)}\left[\frac{2 n!!}{(2 n-1)!!}\right]^{2}<\frac{1}{2 n} \cdot \frac{\pi}{2}
$$

Hiệu này dần tới 0 khi $n \rightarrow \infty$ do đó $\frac{\pi}{2}$ là giới hạn chung của chúng, nghīa là

$$
\frac{\pi}{2}=\lim _{n \rightarrow \infty}\left[\frac{(2 n)!!}{(2 n-1)!!}\right]^{2} \cdot \frac{1}{2 n+1}
$$

11. Theo giả thiết $f(x)$ liên tục trên R, nên với mọi a thực, luôn có thé viết

$$
\int_{a}^{a+T} f(x) d x=\int_{a}^{0} f(x) d x+\int_{0}^{T} f(x) d x+\int_{T}^{a+T} f(x) d x .
$$

Xét tích phân thứ ba : $\int_{T}^{a+T} f(x) d x$, với tích phân này, thực hiện phép đổi biến $\mathrm{x}=\mathrm{t}+\mathrm{T}$, có
127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

$$
\int_{T}^{a+T} f(x) d x=\int_{0}^{a} f(t+T) d t=\int_{0}^{a} f(x+T) d x .
$$

Mặt khác, $f(x)$ có chu kì là T nên : $f(x+T)=f(x)$ do đó

$$
\int_{T}^{a+T} f(x) d x=\int_{0}^{a} f(x+T) d x=\int_{0}^{a} f(x) d x
$$

Trở lại biểu thức tích phân đẩu tiên, ta có

$$
\int_{a}^{a+T} f(x) d x=\int_{a}^{0} f(x) d x+\int_{0}^{a} f(x) d x+\int_{0}^{T} f(x) d x
$$

tức là

$$
\int_{a}^{a+T} f(x) d x=\int_{0}^{T} f(x) d x
$$

12. Vì hàm số $\mathrm{f}(\mathrm{x})$ không xác định tại các điểm $\mathrm{x}=0$ và $\mathrm{x}=2$, nên phải tách tích phân cần tính thành 3 tích phân và có

$$
\mathrm{I}=\int_{-1}^{3} \frac{\mathrm{f}^{\prime}(\mathrm{x}) \mathrm{dx}}{1+\mathrm{f}^{2}(\mathrm{x})}=\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}
$$

trong đó :

$$
I_{1}=\int_{-1}^{0} \frac{f^{\prime}(x) d x}{1+f^{2}(x)} ; I_{2}=\int_{0}^{2} \frac{f^{\prime}(x) d x}{1+f^{2}(x)} ; I_{3}=\int_{2}^{3} \frac{f^{\prime}(x) d x}{1+f^{2}(x)}
$$

Mặt khác, để ý rà̀ng

$$
\int \frac{f^{\prime}(x) d x}{1+f^{2}(x)}=\int \frac{d(f)}{1+f^{2}}=\operatorname{arctg}(x)
$$

Do đ6, với $\mathrm{f}(\mathrm{x})=\frac{(\mathrm{x}+1)^{2}(\mathrm{x}-1)}{\mathrm{x}^{3}(\mathrm{x}-2)}$
127.0.0.1 downlopged 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

$$
\begin{aligned}
I_{1} & =\left.\operatorname{arctg}(x)\right|_{-1} ^{0}=\operatorname{arctg}(0)-\operatorname{arctg} f(-1) \\
& =\operatorname{arctg}(-\infty)-\operatorname{arctg}(0)=-\frac{\pi}{2} \\
I_{2} & =\left.\operatorname{arctg}(x)\right|_{0} ^{2}=\operatorname{arctg}\left(2^{-}\right)-\operatorname{arctg} f\left(0^{+}\right) \\
& =\operatorname{arctg}(-\infty)-\operatorname{arctg}(+\infty) \\
& =-\frac{\pi}{2}-\frac{\pi}{2}=-\pi
\end{aligned}
$$

và cuối cùng

$$
\begin{aligned}
I_{3} & =\left.\operatorname{arctgf}(x)\right|_{2} ^{3}=\operatorname{arctgf}(3)-\operatorname{arctgf}\left(2^{+}\right) \\
& =\operatorname{arctg} \frac{32}{27}-\operatorname{arctg}(+\infty) \\
& =\operatorname{arctg} \frac{32}{27}-\frac{\pi}{2}
\end{aligned}
$$

Vậy :

$$
\begin{aligned}
& I=I_{1}+I_{2}+I_{3}=-\frac{\pi}{2}-\pi+\operatorname{arctg} \frac{32}{27}-\frac{\pi}{2} \\
& I=\operatorname{arctg} \frac{32}{27}-2 \pi
\end{aligned}
$$

13. Với các hằng số α, β bất kì, luôn có :

$$
(\alpha f+\beta g)^{2} \geq 0
$$

Do đó, luôn có :

$$
\int_{a}^{b}(\alpha f+\beta g)^{2} d x \geq 0,(a<b)
$$

Mặt khác :

$$
\begin{aligned}
\int_{a}^{b}(\alpha f+\beta g)^{2} d x & =\int_{a}^{b}\left(\alpha^{2} f^{2}+2 \alpha \beta f g+\beta^{2} g^{2}\right) d x \\
& =\alpha^{2} \int_{a}^{b} f^{2} d x+2 \alpha \beta \int_{a}^{b} f g d x+\beta^{2} \int_{a}^{b} g^{2} d x .
\end{aligned}
$$

127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012 .

Vậy, luôn có : (với mọi $\alpha, \beta \in \mathbf{R}$)

$$
\alpha^{2} \int_{a}^{b} f^{2} d x+2 \alpha \beta \int_{a}^{b} f g d x+\beta^{2} \int_{a}^{b} g^{2} d x \geq 0
$$

Vế trái của bất đẳng thức trên là một tam thức bậc hai đối với α hoạ̣c β, tam thức này luôn khơng âm do đó luôn có

$$
\left(\int_{a}^{b} f g d x\right)^{2}-\left(\int_{a}^{b} f^{2} d x\right)\left(\int_{a}^{b} g^{2} d x\right) \leq 0 .
$$

14. 15) Dưới đây cho bảng giá trị của x và $f(x)=\frac{1}{\ln x}$ tương ứng :

x	$f(x)=\frac{1}{\ln x}$
$x_{0}=2,0$	$y_{0} \approx 1,44269$
$x_{1}=2,5$	$y_{1} \approx 1,09137$
$x_{2}=3,0$	$y_{2} \approx 0,91024$
$x_{3}=3,5$	$y_{3} \approx 0,79823$
$x_{4}=4,0$	$y_{4} \approx 0,72135$
$x_{5}=4,5$	$y_{5} \approx 0,66486$
$x_{6}=5,0$	$y_{6} \approx 0,62133$

Gọi I : $=\int_{2}^{5} \frac{\mathrm{dx}}{\ln x}$ và lưu ý rà̀ng hàm só́ $f(x)=\frac{1}{\ln x}$ không có nguyên hàm có thể biểu diễn dưới dạng các hàm sơ cấp, tuy nhiên nếu gọi $\mathrm{I}_{\mathrm{T}}, \mathrm{I}_{\mathrm{S}}$ là các giá trị xấp xỉ của I tính theo công thức hình thang và công thức Simpson ta được:

$$
\begin{aligned}
\mathrm{I}_{\mathrm{T}} & =0,5\left[\frac{\mathrm{y}_{0}+\mathrm{y}_{6}}{2}+\mathrm{y}_{1}+\mathrm{y}_{2}+\mathrm{y}_{3}+\mathrm{y}_{4}+\mathrm{y}_{5}\right] \\
& =0,5[1,03201+4,18605]=2,60903
\end{aligned}
$$

127.0.0.1 dpysnloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
và $\quad I_{S}=\frac{5-2}{3.6}\left[\left(y_{0}+y_{6}\right)+4\left(y_{1}+y_{3}+y_{5}\right)+2\left(y_{2}+y_{4}\right)\right]$

$$
\begin{aligned}
& =\frac{1}{6}[2,06402+10,21784+3,26318]=2,59084 \\
& \left|I_{S}-I_{T}\right|<0,019
\end{aligned}
$$

2) Dưới đây cho bảng giá trị x và $f(x)=\sqrt{\cos x}$ tương ứng :

$x(d 0)$	$f(x)=\sqrt{\cos x}$
$x_{0}=0$	$y_{0}=1,000000$
$x_{1}=6$	$y_{1} \approx 0,997257$
$x_{2}=12$	$y_{2} \approx 0,980130$
$x_{3}=18$	$y_{3} \approx 0,975218$
$x_{4}=24$	$y_{4} \approx 0,955796$
$x_{5}=30$	$y_{5} \approx 0,930605$
$x_{6}=36$	$y_{6} \approx 0,899450$
$x_{7}=42$	$y_{7} \approx 0,862060$
$x_{8}=48$	$y_{8} \approx 0,818000$
$x_{9}=54$	$y_{9} \approx 0,766670$
$x_{10}=60$	$y_{10} \approx 0,707110$

Gọi I_{T} là giá trị xá́p xỉ của $I=\int_{0}^{\frac{\pi}{3}} \sqrt{\cos x} d x$ theo công thức hình thang và I_{S} là giá trị xấp xỉ theo coong thức Simpson ta có :

$$
\begin{aligned}
\mathrm{I}_{\mathrm{T}} & =\frac{6.3,1416}{180}\left[\left(\mathrm{y}_{0}+\mathrm{y}_{10}\right) / 2+\left(\mathrm{y}_{1}+\mathrm{y}_{2}+\ldots+\mathrm{y}_{9}\right)\right] \\
& =(0,10472)[0,853555+8,194069]
\end{aligned}
$$

$$
=(0,10472)(9,047624) \approx 0,9475
$$

127.0.0.1 downloaded 60384.pdf at Tue Jul 31 (0, $08: 30: 34$ ICT 2012
và

$$
\begin{aligned}
\mathrm{I}_{\mathrm{S}} & =(0,03491)\left[\left(\mathrm{y}_{\mathrm{o}}+\mathrm{y}_{10}\right)+4\left(\mathrm{y}_{1}+\mathrm{y}_{3}+\mathrm{y}_{5}+\ldots+\mathrm{y}_{9}\right)+2\left(\mathrm{y}_{2}+\ldots+\mathrm{y}_{8}\right)\right] \\
& =(0,03491)[(1,70711)+4(4,537705)+2(3,662559)] \\
& =(0,03491)[1,70711+18,15082+7,324518] \\
& =(0,03491)(27,182448)=0,9489 . \\
& \left|\mathrm{I}_{\mathrm{S}}-\mathrm{I}_{\mathrm{T}}\right|<0,0014
\end{aligned}
$$

15. 16) $S=\int_{0}^{4} \sqrt{y} d y=\left.\frac{2}{3} y \sqrt{y}\right|_{0} ^{4}=\frac{16}{3}$
2) $S=\int_{0}^{1}\left(x+4-\left(x^{2}+4\right)\right) d x=$

$$
=\left.\left(\frac{1}{2} x^{2}-\frac{1}{3} x^{3}\right)\right|_{0} ^{1}=\frac{1}{6}
$$

3) $S=\int_{0}^{1}(2 x-x) d x+\int_{1}^{\sqrt{2}}\left(2 x-x^{3}\right) d x$

Hinh 19

$$
=\left.\frac{1}{2} x^{2}\right|_{0} ^{1}+\left.\left(x^{2}-\frac{1}{4} x^{4}\right)\right|_{1} ^{\sqrt{2}}=\frac{3}{4}(x e m \text { hình } 19)
$$

4) Với $x \in[0,2]$ thì $4-x^{2} \geq 2 x$, do đó :

$$
\begin{aligned}
S & =2 \int_{0}^{2}\left(\sqrt{4 x-x^{2}}-\sqrt{2 x}\right) d x \\
& =2\left(\left[\frac{(2-x)}{2} \sqrt{4 x-x^{2}}+\frac{4}{2} \arcsin \frac{2-x}{2}\right]_{0}^{2}-\left.\sqrt{2} \cdot \frac{2}{3} x \sqrt{x}\right|_{0} ^{2}\right) \\
& =2 \pi-\frac{16}{3}
\end{aligned}
$$

127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
5) Vì lẽ đới xứng, ta có :
(xem hình 20)

$$
\begin{aligned}
\frac{1}{4} S & =\frac{1}{2} \int_{0}^{\frac{\pi}{4}} \mathrm{a}^{2} \cos 2 \varphi \mathrm{~d} \varphi \\
& =\left.\frac{\mathrm{a}^{2}}{4} \sin 2 \varphi\right|_{0} ^{\frac{\pi}{4}}=\frac{\mathrm{a}^{2}}{4}
\end{aligned}
$$

Vậy $S=a^{2}$.

Hinh 20

$\mathrm{MN}=\sqrt{\mathrm{a}^{2}-\mathrm{x}^{2}}$, do vậy diện tích $\mathrm{S}(\mathrm{x})$ của thiết diện là

$$
S(x)=a^{2}-x^{2}
$$

Do đó, theo cợng thức tính thể tích của vật thể ứng với thiết diện có diện tích $S(x)$ là :

$$
V=8 \int_{0}^{a} S(x) d x=8 \int_{0}^{a}\left(a^{2}-x^{2}\right) d x=\frac{16}{3} a^{3} .
$$

(Công thức 7.82 trang 283 sách đã dẫn).
17. Theo công thức (7.82) sách Toán Cao cấp tập II (của cùng tác giả) thể tích V phải tìm là

$$
V=\int_{0}^{a} S(x) d x
$$

với $\mathrm{S}(\mathrm{x})$, theo đề bài (xem hình 22) là
$S(x)=\int_{0}^{2}\left(4-y^{2}\right) d y=4 y-\left.\frac{y^{3}}{3}\right|_{0} ^{2}=\frac{16}{3}$.

Hinh 22

Vậy

$$
V=\int_{0}^{a} \frac{16}{3} d x=\left.\frac{16}{3} x\right|_{0} ^{a}=\frac{16}{3} a
$$

18. 19) $\mathrm{y}^{2}=4-\mathrm{x}, \mathrm{x}=0 \Rightarrow \mathrm{y}= \pm 2$.

$$
V=\pi \int_{-2}^{2}\left(4-y^{2}\right)^{2} d y=2 \pi \int_{0}^{2}\left(4-y^{2}\right)^{2} d y=\frac{512 \pi}{15}
$$

2) $x y=4, y=\frac{4}{x} ; y^{2}=\frac{16}{x^{2}}$.

$$
V=\pi \int_{1}^{4} \frac{16}{x^{2}} d x=12 \pi
$$

3) Tịnh tiễn gớc tọa độ đến điểm $(-2,0)$ thì phương trình $\mathrm{y}=\mathrm{x}^{2}$ trong hệ tọa độ mới sẽ là $Y=(X-2)^{2} \Rightarrow X=2 \pm \sqrt{Y}$, do đó

$$
\mathrm{V}=\pi \int_{0}^{4}\left[(2+\sqrt{Y})^{2}-(2-\sqrt{Y})^{2}\right] \mathrm{dY}=\frac{1 \dot{2} 8 \pi}{3}
$$

127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
19. 1) Khi $x=0 \Rightarrow y= \pm 2 \sqrt{3} ; x=3 \Rightarrow y=0$.

$$
\mathrm{L}=2 \int_{0}^{3} \sqrt{1+\mathrm{y}^{\prime 2}} \mathrm{dx}
$$

Ở day: $9 y^{2}=4(3-x)^{3}$

$$
\begin{aligned}
& 18 y y^{\prime}=-12(3-x)^{2}, y^{\prime}=-\frac{2}{3 y}(3-x)^{2} \\
& y^{\prime 2}=\frac{4}{9 y^{2}}(3-x)^{4}=\frac{4(3-x)^{4}}{4(3-x)^{3}}=3-x \\
& 1+y^{\prime 2}=1+3-x=4-x
\end{aligned}
$$

Vậ $L=2 \int_{0}^{3} \sqrt{4-x} d x=\frac{28}{3}$.
2) $y=\frac{1}{2} x^{2}-1 ; x=0 \Rightarrow y=-1 ; y=0 \Rightarrow x= \pm \sqrt{2}$.

$$
\begin{aligned}
L & =2 \int_{0}^{\sqrt{2}} \sqrt{1+y^{\prime 2}} d x=2 \int_{0}^{\sqrt{2}} \sqrt{1+x^{2}} d x \\
& =\sqrt{6}+\ln (\sqrt{2}+\sqrt{3})
\end{aligned}
$$

20. Dùng công thức :

$$
S=2 \pi \int_{\alpha}^{\beta} y \sqrt{x^{\prime 2}+y^{\prime 2}} d t
$$

Vì lẽ đới xứng (xem hình 23) có

$$
\frac{1}{2} S=2 \pi \int_{0}^{\frac{\pi}{2}} y \sqrt{x^{\prime 2}+y^{\prime 2}} d t
$$

127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

$$
\begin{aligned}
V i x & =\operatorname{acos}^{3} t \\
y & =\operatorname{asin}^{3} t
\end{aligned}
$$

nên $x^{\prime}=-3 a \cos ^{2} t \sin t$

$$
y^{\prime}=3 a \sin ^{2} t \operatorname{cost}
$$

$$
x^{\prime 2}+y^{\prime 2}=9 a^{2} \sin ^{2} t \cos ^{2} t
$$

Thế vào biểu thức tích phân và được :

Hinh 23

$$
\begin{aligned}
& \frac{1}{2} S=2 \pi \int_{0}^{\frac{\pi}{2}} a \sin ^{3} t \sqrt{9 a^{2} \sin ^{2} t \cos ^{2} t} d t \\
&=2 \pi \int_{0}^{\frac{\pi}{2}} a \sin ^{3} t \cdot 3 a \sin t \cos t d t \\
& \text { (vì } t \in\left[0, \frac{\pi}{2}\right] \text { nên sint, cost } \geq 0 \text {) } \\
&=\frac{6}{5} \pi a^{2}
\end{aligned}
$$

Cuói cùng :

$$
\mathrm{S}=\frac{12}{5} \pi \mathrm{a}^{2}
$$

21. 22) Đặt $\mathrm{x}=-\mathrm{t}$, ta $\mathrm{c} \delta$

$$
I=\int_{-\infty}^{0} x e^{x} d x=-\int_{+\infty}^{0}(-t) e^{-t} d t=-\int_{0}^{+\infty} t e^{-t} d t
$$

thì I có dạng $\int_{0}^{+\infty} x^{p-1} e^{-\ddot{x}} d x$, vơi $p=2$ do đó, theo thit dụ (d) trang 302 sách đã dẩn, I hội tụ và

$$
\mathrm{I}=\left.\mathrm{e}^{-\mathrm{t}}(\mathrm{t}-1)\right|_{0} ^{\infty}=1
$$

127.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
2) Theo định nghĩa ta có:

$$
I=\int_{0}^{+\infty} \cos x d x=\lim _{A \rightarrow+\infty} \int_{0}^{A} \cos x d x=\left.\lim _{A \rightarrow+\infty} \sin x\right|_{0} ^{A}=\lim _{A \rightarrow+\infty} \sin A
$$

Vì không tồn tại $\lim _{A \rightarrow+\infty} \sin A$ nen \bigvee_{∞} phân kì.
3) Ta có:

$$
\mathrm{y}=\int_{-\infty}^{+\infty} \frac{\mathrm{dx}}{\left(\mathrm{x}^{2}+1\right)^{2}}=2 \int_{0}^{+\infty} \frac{\mathrm{dx}}{\left(1+\mathrm{x}^{2}\right)^{2}}
$$

Xét tích phân

$$
\mathrm{J}:=\int_{0}^{+\infty} \frac{\mathrm{dx}}{\left(1+\mathrm{x}^{2}\right)^{2}}=\int_{0}^{\mathrm{a}} \frac{\mathrm{dx}}{\left(1+\mathrm{x}^{2}\right)^{2}}+\int_{\mathrm{a}}^{+\infty} \frac{\mathrm{dx}}{\left(1+\mathrm{x}^{2}\right)^{2}}
$$

với mọi a >0.
Đễ y rằng

$$
\frac{1}{\left(1+x^{2}\right)^{2}}<\frac{1}{x^{4}}, x \in[a,+\infty)
$$

Theo thí dụ (d) trang 293 sách đã dẫn, ta có $\int_{a}^{+\infty} \frac{d x}{x^{4}} h o ̣ ̂ i ~ t u ̣, ~ d o ~ đ o ́ ~$ $\int_{a}^{+\infty} \frac{\mathrm{dx}}{\left(1+\mathrm{x}^{2}\right)^{2}}$ hội tụ và do đó I hội tụ. Bây giờ ta tính I , muón thê, thực hiện phép đởi biến : $x=\operatorname{cotgt}$, co :

$$
\mathrm{I}=2 \int_{0}^{\frac{\pi}{2}} \sin ^{2} \mathrm{tdt}=\frac{\pi}{2}
$$

4) Điểm bất thường của tích phân là $x=2$, thực hiện phếp đởi biến $\mathrm{x}^{2}=\mathrm{t}, \mathrm{c} \delta$

$$
\mathrm{I}=\int_{0}^{2} \frac{\mathrm{x}^{5}}{\sqrt{4-\mathrm{x}^{2}}} \mathrm{dx}=\frac{1}{2} \int_{0}^{4} \frac{\mathrm{t}^{2}}{\sqrt{4-t}} \mathrm{dt}
$$

Điểm bất thường của tích phân mới là $t=4$, tích phân này hội tụ (tiêu chuẩn hội tụ trang 301 sách đã dẩn) và để tính tích phân này ta thực hiện phép đởi biến $4-\mathrm{t}=\mathrm{u}^{2}$, đi đến :

$$
\mathrm{I}=\frac{1}{2} \int_{0}^{4} \frac{\mathrm{t}^{2}}{\sqrt{4-\mathrm{t}}} \mathrm{dt}=\int_{0}^{2}\left(4-u^{2}\right)^{2} \mathrm{du}=\frac{256}{15}
$$

5) Tích phân

$$
I=\int_{0}^{1} \frac{d x}{\sqrt{x(1-x)}}
$$

là trường hợp riêng cửa thí dụ (a) trang 302 , sách đã dān với các điểm bất thường là $x=0$ và $x=1$, do đo I hội tụ và

$$
\mathrm{I}=\pi
$$

6) Tích phân

$$
I=\int_{0}^{2} \frac{d x}{(x-1)^{2}}=\int_{0}^{1} \frac{d x}{(x-1)^{2}}+\int_{1}^{2} \frac{d x}{(x-1)^{2}}
$$

Cả hai tích phân ở vế phải đều có điểm bất thường là $\mathrm{x}=1$, là trường hợp riêng của thí dụ (d) trang 299, sách đã dẫn với $\alpha=2$, do đó phân kì.
7) Trước hết, để ý rằng :

$$
\lim _{x \rightarrow 0} x^{2} \ln ^{2} x=\lim _{x \rightarrow 0} \frac{\ln ^{2} x}{\frac{1}{x^{2}}}=0
$$

và

$$
\lim _{x \rightarrow 0} x^{2} \ln x=\lim _{x \rightarrow 0} \frac{\ln x}{\frac{1}{x^{2}}}=0
$$

Bây giờ, theo định nghĩa ta viết

$$
I=\int_{0}^{1} x \ln ^{2} x d x=\lim _{a \rightarrow 0} \int_{a}^{1} x \ln ^{2} x d x
$$

27.0.0.1 dq/f4loaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

Gọi

$$
\begin{aligned}
J(a) & =\int_{a}^{1} x \ln ^{2} x d x=\left.\frac{x^{2}}{2} \ln ^{2} x\right|_{a} ^{1}-\int_{a}^{1} x \ln x d x \\
& =-\frac{a^{2}}{2} \ln ^{2} a+\frac{a^{2}}{2} \ln a+\int_{a}^{1} \frac{1}{2} x d x \\
J(a) & =-\frac{a^{2}}{2} \ln ^{2} a+\frac{a^{2}}{2} \ln a-\frac{a^{2}}{4}+\frac{1}{4} .
\end{aligned}
$$

Từ hai hệ thức giới hạn trên suy ra :

$$
I=\lim _{a \rightarrow 0} J(a)=\frac{1}{4}
$$

8) Tích phân
$I=\int_{-2}^{2} \frac{d x}{x^{2}-1}$ có hai điểm bất thường là $x= \pm 1$.

$$
I=\int_{-2}^{-1} \frac{d x}{x^{2}-1}+\int_{-1}^{1} \frac{d x}{x^{2}-1}+\int_{1}^{2} \frac{d x}{x^{2}-1}
$$

Vì $\int_{-2}^{-1} \frac{d x}{x^{2}-1}=\int_{1}^{2} \frac{d x}{x^{2}-1}, \int_{-1}^{1} \frac{d x}{x^{2}-1}=2 \int_{0}^{1} \frac{d x}{x^{2}-1}$
nên có thể viết

$$
I=2\left[\int_{0}^{1} \frac{d x}{x^{2}-1}+\int_{1}^{2} \frac{d x}{x^{2}-1}\right]
$$

Cả hai tích phân bên phải hệ thức trên đều có thể đưa về dạng cửa bài tập số 20.5 ở trên nên I phân kì.
22.1) Vi $\frac{\ln (1+x)}{x}>\frac{1}{x}, x>e$
và $\int_{1}^{+\infty} \frac{\mathrm{dx}}{\mathrm{x}}$ phân kì (thí dụ (d) trang 293 sách đā dẫn) nên tích phân đā cho phân kì.
2) Xét hàm sớ $y=e^{-x^{2}}$, có $y^{\prime}=-2 x e^{-x^{2}}$ $y^{\prime}<0$ khi $x>0$ nên y nghịch biến khi $x>0$ do đó $\mathrm{e}^{-\mathrm{x}^{2}}<1$ khi $\mathrm{x}>0$ và vì thé $\frac{\mathrm{e}^{-\mathrm{x}^{2}}}{\mathrm{x}^{2}}<\frac{1}{\mathrm{x}^{2}}$.
Tích phân $\int_{1}^{+\infty} \frac{d x}{x^{2}}$ hội tụ (thí dụ (d) trang 293 sách đā dẫn) do đó :

$$
\int_{1}^{+\infty} \frac{\mathrm{e}^{-\mathrm{x}^{2}}}{\mathrm{x}^{2}} d x \text { họi } t u
$$

3) Ta có

$$
\int_{1}^{+\infty}\left(1-\cos \frac{2}{x}\right) d x=2 \int_{1}^{+\infty} \sin ^{2} \frac{1}{x} d x
$$

Ví $\sin ^{2} \frac{1}{x}<\frac{1}{x^{2}}$ khi x đủ lớn, do đó $\int_{1}^{+\infty}\left(1-\cos \frac{2}{x}\right) d x$ hội tụ.
4) Với $x>1$ ta luôn có

$$
\frac{1+\mathrm{x}^{2}}{\mathrm{x}^{3}}=\frac{1}{\mathrm{x}^{3}}+\frac{1}{\mathrm{x}}>\frac{1}{\mathrm{x}}
$$

Như đã biết $\int_{1}^{+\infty} \frac{\mathrm{dx}}{\mathrm{x}}$ phân kì, do đó $\int_{1}^{+\infty} \frac{1+\mathrm{x}^{2}}{\mathrm{x}^{3}} \mathrm{dx}$ phân kì.
5) Vì $\frac{1}{\mathrm{e}^{\sqrt[3]{x}}-1}$ là vô cùng lớn có bậc $\frac{2}{3}$ so với $\frac{1}{\mathrm{x}}$ do đó, với điểm
bất thường $x=0$ thì tích phân $\int_{0}^{1} \frac{\mathrm{dx}}{\mathrm{e}^{\sqrt[3]{\mathrm{x}}}-1}$ họi tụ.
6) Điểm bất thường là $x=0$ và khi $x \rightarrow 0$ thì ta có $\frac{1}{\operatorname{tgx}-x}$ có bậc 3 so với $\frac{1}{x}$ do đó, tích phan $\int_{0}^{1} \frac{\mathrm{dx}}{\operatorname{tgx}-\mathrm{x}}$ phân kì.
7) Thực hiện phép đởi biến $x^{2}=t$, ta có:

$$
I=\int_{0}^{1} \frac{x^{2} d x}{\sqrt[3]{\left(1-x^{2}\right)^{5}}}=\frac{1}{2} \int_{0}^{1} t^{\frac{1}{2}}(1-t)^{\frac{5}{3}} d t
$$

Tích phân này có điểm bất thường $\mathrm{t}=0$ và có thể viết dưới dạng

$$
I=\frac{1}{2} \int_{0}^{1} t^{\frac{1}{2}}(1-t)^{-\frac{5}{3}} d t=\frac{1}{2} \int_{0}^{1} t^{1-\frac{1}{2}}(1-t)^{-\frac{2}{3}-t} d t
$$

tích phân thuộc lớp tích phân có dạng $\int_{0}^{1} \mathrm{x}^{\mathrm{a}-1}(\mathrm{l}-\mathrm{x})^{\mathrm{b}-1} \mathrm{dx}$ với $\mathrm{a}=1$
và $b=-\frac{2}{3}$, do đó thí dụ (c) trang 302, sách đã dẵn, tích phân' I phân kì.
8) Vì $x=0$ là điểm bất thường và vì

$$
\frac{\sqrt{x}}{e^{\sin x}-1} \sim \frac{\sqrt{x}}{\sin x} \sim \frac{\sqrt{x}}{x} \sim \frac{1}{\sqrt{x}}, x \rightarrow 0
$$

nên $\frac{\sqrt{x}}{\mathrm{e}^{\sin x}-1}$ là một vô cùng lớn khi $x \rightarrow 0$; hơn nữa, vô cùng lơn này cùng bậc với $\frac{1}{\sqrt{x}}$, do đọ́ tích phân $\int_{0}^{1} \frac{\sqrt{x} d x}{e^{\sin x}-1}$ hội tụ.

Churơng 8 CHUỐI

A. Đé BÀI

1. Kháo sát sự hội tụ của các chuỗi só có só hạng tởng quắt sau đây :
1) $u_{n}=\frac{2 n^{2}+1}{n^{2}+n+1}$;
2) $u_{n}=\sqrt{n^{2}+n}-n$
3) $u_{n}=\operatorname{arctg} \frac{n^{2}-1}{n^{2}+1}$;
4) $u_{n}=\frac{2^{n}+n}{3^{n}+3 n+3}$
5) $u_{n}=\frac{(n+1)(n+2)}{n^{2}\left(n^{2}+3\right)}$;
6) $u_{n}=1-\cos \frac{1}{\sqrt{n}}$
7) $\mathrm{u}_{\mathrm{n}}=\ln \left(1+\operatorname{tg} \frac{1}{\mathrm{n}^{2}}\right)$;
8) $u_{n}=\frac{1}{n} \sin \frac{\pi}{\sqrt{2 n}}$
9) $u_{n}=\frac{\sqrt{n(n+2)}}{n^{2}+3 \ln n}$;
10) $u_{n}=\frac{2+\cos n}{n^{\alpha}}(\alpha>0)$.
2. Cùng câu hỏi như bài 1 .
1) $u_{n}=\frac{1}{\sqrt{n}}\left(e^{\frac{1}{n}}-1\right)$;
2) $u_{n}=\ln \frac{n^{2}+\sqrt{n}}{n^{2}-n} \operatorname{tg} \frac{1}{n^{2}}, n \geq 2$
3) $u_{n}=\frac{k^{n}}{n^{k}}(k>0)$;
4) $u_{n}=\frac{a^{n}}{n+b^{n}}(a>0, b>0)$
27.0.0.1 downnloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
5) $u_{n}=\ln \frac{1}{\sqrt{n}}-\ln \sin \frac{1}{\sqrt{n}}$;
6) $u_{n}=\frac{\ln n}{n^{2}}$
7) $u_{n}=\int_{0}^{\frac{1}{n}} \frac{\sqrt{x}}{\sqrt{1+x^{2}}} d x$;
8) $u_{n}=\int_{n}^{n+\frac{1}{2}} \frac{d x}{\sqrt{x^{4}+1}}$
9) $u_{n}=\cos \left(\frac{\pi}{2} \frac{n^{2}}{n^{2}+a n+b}\right)$;
10) $\mathrm{u}_{\mathrm{n}}=n \mathrm{a}^{\sqrt{n}}(\mathrm{a}>0)$
11) $u_{n}=\sqrt[3]{n^{3}+a n}-\sqrt{n^{2}+3}$.
3. Các chuỗi só có só hạng tổng quát sau đây cơ hội tụ không? Tính tổng của chúng khi chúng hội tụ.
1) $u_{n}=\frac{1}{(2 n-1)(2 n+1)}$;
2) $u_{n}=\frac{1}{n^{2}+n}$
3) $u_{n}=\frac{2 n+1}{n^{2}(n+1)^{2}}$;
4) $u_{n}=(-1)^{n+1} \frac{2 n+1}{n(n+1)}$
5) $u_{n}=\operatorname{arctg} \frac{1}{n^{2}+n+1}$;
6) $u_{n}=\frac{n}{n^{4}+n^{2}+1}$
7) $\mathrm{u}_{\mathrm{n}}=\ln \left(1-\frac{1}{\mathrm{n}^{2}}\right), \mathrm{n} \geq 2$;
8) $u_{n}=\frac{\sin \frac{1}{n(n+1)}}{\cos \frac{1}{n} \cdot \cos \frac{1}{n+1}}$
9) $u_{n}=\ln \left(2 \cos \frac{\alpha}{2^{n}}-1\right), \alpha \in\left(-\frac{\pi}{3}, \frac{\pi}{3}\right)$
10) $u_{n}=\ln n+a \ln (n+1)+b \ln (n+2)$.

4. Cùng câu hỏi như bài 1 .

1) $u_{n}=\frac{1}{(2 n-1) \cdot 2^{2 n-1}}$;
2) $u_{n}=\frac{n^{2}}{n!}$
27.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
3) $u_{n}=\frac{n^{2}}{2^{n}+n}$;
4) $u_{n}=\frac{2.4 .6 \ldots(2 n)}{n^{n}}$
5) $\mathbf{u}_{\mathrm{n}}=\frac{\mathbf{a}^{\mathrm{n}}}{\mathrm{n}^{2}+1}, a>0$;
6) $u_{n}=\left(\frac{2 n^{2}-1}{3 n^{2}+2}\right)^{n}$.
7) $u_{n}=\left(\frac{n-1}{2 n-1}\right)^{n \ln n}$;
8) $\mathrm{u}_{\mathrm{n}}=\left(\operatorname{arctg} \frac{1}{\mathrm{n}}\right)^{\mathrm{n}}$
9) $u_{n}=\frac{(n!)^{2}}{(2 n)!}$;
10) $u_{n}=\operatorname{tg}^{n}\left(a+\frac{b}{n^{2}}\right), 0<a \leq \frac{\pi}{2}, b>0$
11) $u_{n}=\left(\frac{n}{n+1}\right)^{n^{\alpha}}$;
12) $u_{n}=\frac{4^{n}(n!)^{2}}{(2 n)!}$
13) $u_{n}=\left(1-\frac{3}{2} \frac{\ln n}{n}\right)^{n}$;
14) $u_{n}=\frac{(-1)^{n}}{n \ln n}$
15) $u_{n}=\sin \left(\pi \sqrt{n^{2}+1}\right)$;
16) $u_{n}=\sin \left(\frac{1}{n}+n\right) \pi$
17) $u_{n}=(-1)^{n} \frac{n^{2}}{(\ln n)^{n}}$;
18) $\mathrm{u}_{\mathrm{n}}=\frac{1+(-1)^{\mathrm{n}} \sqrt{\mathrm{n}}}{1+\mathrm{n}}$
19) $u_{n}=\frac{(-1)^{n}}{n+(-1)^{n+1}}$;
20) $u_{n}=\frac{(-1)^{n}}{\sqrt{n}+(-1)^{n+1}}$
21) $u_{n}=\sqrt{n+(-1)^{n}}-\sqrt{n}$;
22) $u_{n}=\ln \left[1+\frac{(-1)^{n-1}}{n^{\alpha}}\right], \alpha>0$.
5. 6) Khảo sát sự hội tụ của hai dãy hàm sơ $\left\{\mathrm{f}_{\mathrm{n}}\right\},\left\{\mathrm{g}_{\mathrm{n}}\right\}$ xác định bởi

$$
\mathrm{f}_{\mathrm{n}}: \mathbf{R}_{+} \rightarrow \mathbf{R}, \mathrm{x} \mapsto \frac{\mathrm{x}}{\mathrm{x}+\mathrm{n}}, \mathrm{~g}_{\mathrm{n}}: \mathbf{R}_{+} \rightarrow \mathbf{R}, \mathrm{x} \mapsto \frac{\mathrm{nx}}{1+\mathrm{nx}}
$$

27.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
170
a) trên doạn $[0,1]$
b) trên khoảng [$1,+\infty$).
2) Cho dãy hàm só $\left\{f_{n}\right\}$ xác định bởi

$$
f_{n}:[0,2] \rightarrow R, x \mapsto f_{n}(x)=\frac{x^{n}}{1+x^{n}}
$$

a) Khảo sát sự hội tụ của dãy $\left\{f_{n}\right\}$. Sự họi tụ ấy có đều không ?
b) Chứng minh rà̀ng $\lim _{n \rightarrow \infty} \int_{0}^{2} f_{n}(x) d x=1$
3) Chứng minh rằng dãy hàm số $\left\{\mathrm{f}_{\mathrm{n}}\right\}$. xác định bởi

$$
f_{n}: \mathbf{R}_{+} \rightarrow \mathbf{R}, x \mapsto f_{n}(x)= \begin{cases}\left(1-\frac{x}{n}\right)^{n} & \text { nếu } x \in[0, n] \\ 0 & \text { nếu } x>n\end{cases}
$$

hợi tụ tới một hàm sớ f. Sự hội tụ ấy có đều không ?
6. 1) a) Chứng minh rằng chuỗi hàm số $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}\left(\frac{2 x+1}{x+2}\right)^{n}$ hội tụ đều trên doạn $[-1,1]$.
b) Chứng minh rà̀ng chuỗi hàm số $\sum_{n=1}^{\infty} \sqrt{n} \mathrm{xe}^{-\mathrm{n}^{2} x}$ hội tụ đều trên \mathbf{R}^{+}.
c) Khảo sát sự hội tụ của chuổi hàm $s o ́ \sum_{n=1}^{\infty}(-1)^{n} n^{-x}$.
2) Chứng minh rằng chuỗi hàm só với só hạng tởng quát $u_{n}(x)=(-1)^{n} \frac{x^{2}+n}{n^{2}}$ hội tụ đều trên mọi đoạn [a,b], nhưng không hội tụ tuyệt đối.
27.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
7. Chứng minh rằng chuỗi hàm số $\sum_{n=1}^{\infty} n e^{-n x}$ hội tụ đều trên khoảng $[\mathrm{a},+\infty)$ với $\mathrm{a}>0$, nhưng không hội tụ đều trên khoảng $[0,+\infty)$, Tính tổng của chuỗi hàm số ấy với $x>0$.
8. Cho các hàm số

$$
x \mapsto u_{n}(x)=\left\{\begin{array}{lc}
x^{n+1} \ln x & \text { nếu } 0<x \leq 1 \\
0 & \text { nếu } x=0
\end{array}\right.
$$

1) Chứng minh rằng chuỗi hàm số $\sum_{n=0}^{\infty}(-1)^{n} u_{n}(x)$ hội tụ đều trên doạn $[0,1]$.
2) Chứng minh rằng chuỗi hàm số $\sum_{n=0}^{\infty} u_{n}(x)$ hội tụ không đều trên doạn $[0,1]$.
9. Chứng minh rằng hàm số $f(x)=\sum_{n=1}^{\infty} \frac{1}{n(n+x)}$ xác định, liên tục và khả vi trên \mathbf{R}^{+}.
10. Cho chuỗi hàm số $\sum_{n=1}^{\infty} \frac{1}{1+x^{n}}$.

Khảo sát sự hội tụ của nó. Có thể nói gì về sự liên tục và khả vi của nó.
11. Tìm miền hội tụ của các chuỗi luỹ thừa có số hạng tổng quát sau :

1) $u_{n}(x)=(-1)^{n+1} \frac{x^{n}}{n}$;
2) $u_{n}(x)=\frac{(x-4)^{n}}{\sqrt{n}}$
3) $u_{n}(x)=\left(\frac{n+1}{2 n+1}\right)^{n}(x-2)^{2 n}$;
4) $u_{n}(x)=(n x)^{n}$
27.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012 172
5) $\mathrm{u}_{\mathrm{n}}(\mathrm{x})=\mathrm{x}^{\mathrm{n}} \ln \mathrm{n}$;
6) $u_{n}(x)=\frac{(5 x)^{n}}{n!}$
7) $\mathrm{u}_{\mathrm{n}}(\mathrm{x})=\frac{\mathrm{x}^{n}}{\mathrm{n}^{\alpha}}, \alpha>0$;
8) $u_{n}(x)=(-1)^{n-1} \frac{x^{n}}{n!}$
9) $\mathrm{u}_{\mathrm{n}}(\mathrm{x})=\mathrm{a}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}}$, trong do $0<\mathrm{a}_{0}<\frac{\pi}{2}, \mathrm{a}_{\mathrm{n}}=\sin \mathrm{a}_{\mathrm{n}-1} \forall \mathrm{n} \geq 1$.
12. Tìm miền hội tụ và tính tổng của các chuỗi luỹ thừa có số hạng tổng quát sau :
1) $u_{n}(x)=(3 n+1) x^{3 n}, n \geq 1$
2) $\mathrm{u}_{\mathrm{n}}(\mathrm{x})=\left(2^{\mathrm{n}}+3^{\mathrm{n}}\right) \mathrm{x}^{\mathrm{n}}, \mathrm{n} \geq 0$
3) $u_{n}(x)=\frac{n^{2}+3 n-1}{n+3} \cdot \frac{x^{n}}{n!}, n \geq 0$
4) $u_{n}(x)=$ chna. $x^{n}, a>0, n \geq 0$
5) $u_{n}(x)=(-1)^{n-1} \frac{x^{n-1}}{n}, n \geq 1$.
13. Khai triển hàm số $\mathrm{f}(\mathrm{x})=\frac{1}{\mathrm{x}}$ thành chuỗi Taylor ở lân cận điểm $x_{0}=3$.
14. Khai triển thành chuổi luỹ thừa ở lân cận điểm $x_{0}=0$ các hàm số sau:
1) $f(x)=\operatorname{ch} x$;
2) $f(x)=x^{2} e^{x}$
3) $f(x)=\sin ^{2} x$;
4) $f(x)=\frac{1}{x^{2}-3 x+2}$
5) $f(x)=\ln \left(x^{2}-5 x+6\right)$;
6) $f(x)=\int_{0}^{x} \cos \left(t^{2}\right) d t$
27.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
7) $f(x)=\left\{\begin{array}{ll}\frac{1}{x} \ln \frac{1+x}{1-x} \text { nếu } x \neq 0 \\ 2 & \text { nếu } x=0\end{array} ;\right.$ 8) $f(x)=e^{x} \cos x$.
15. Chứng minh rằng hàm só

$$
f(x)= \begin{cases}e^{-\frac{1}{x^{2}}} & \text { nếu } x \neq 0 \\ 0 & \text { nếu } x=0\end{cases}
$$

không thể khai triển được thành chuôi Taylor ở lân cận điểm $\mathrm{x}_{\mathrm{o}}=0$.
16. Tìm bán kính hội tụ của chuổi luỹ thừa có số hạng tổng quát là

$$
u_{n}(x)=\left(1+(-1)^{n} \frac{1}{n}\right)^{n^{2}} \cdot x^{n}
$$

17. Cho hai chuôi luỹ thừa $\sum_{n=1}^{\infty} a_{n} x^{n}, \sum_{n=1}^{\infty} b_{n} x^{n}$, có bán kính hội tụ theo thứ tự là $\mathrm{R}, \mathrm{R}^{\prime}$.
1) Chứng minh rằng nếu có một số nguyên dương n_{o} sao cho $\left|a_{n}\right| \leq\left|b_{n}\right|, \forall n \geq n_{o}$ thì $R \geq R^{\prime}$.
2) Chứng minh rà̀ng néu $\left|a_{n}\right| \sim\left|b_{n}\right|$ khi $n \rightarrow \infty$ thì $R=R$ '.
3) Tínt bán kính hợi tụ của các chuối luȳ thừa có só hạng tổng quát sau :
a) $u_{n}(x)=\frac{\operatorname{chn}}{\operatorname{sh}^{2} n} x^{n}$
b) $u_{n}(x)=\arccos \left(1-\frac{1}{n^{2}}\right) x^{n}$
c) $u_{n}(x)=(\sqrt[n]{n+1}-\sqrt[n]{n}) x^{\pi}$
d) $u_{n}(x)=\cos \left(\pi \sqrt{n^{2}+n+1}\right) x^{n}$.
27.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
18. Tính các só sau với độ chính xác 0,0001 :
1) $\sqrt{\mathrm{e}}$;
2) $\sqrt[5]{1,1}$;
. 3) $\ln (1,04)$.
19. 20) Tính $\int_{0}^{1} \mathrm{e}^{-\mathrm{x}^{2}} \mathrm{dx}$ với độ chính xác 0,001 .
2) Tính $\int_{0}^{1} \operatorname{sh}\left(x^{2}\right) \mathrm{dx}$ với độ chính xác 0,0001 .
20. Tính $\cos 18^{\circ}$ với độ chính xác 0,0001 .
21. Khai triển thành chuôi Fourier hàm sớ $f(x)$ lé, tuần hoàn với chu kì 2π, bà̀ng $\pi-x$ với $0<x<\pi$.
22. Khai triển thành chuỗi Fourier, hàm só $\mathrm{f}(\mathrm{x})$ chẵn, tuẩn hoàn với chu kì 2π, bằng $1-\frac{2 x}{\pi}$ vóii $0 \leq x \leq \pi$. Suy ra giá trị tống của chuỗi só

$$
\sum_{n=1}^{\infty} \frac{1}{(2 n+1)^{2}}
$$

23. Khai triển thành chuỗi Fourier hàm số $f(x)$ tuấn hoàn có chu kì 2π, bằng $1-\frac{x^{2}}{\pi^{2}}$ với $-\pi \leq x \leq \pi$. Suy ra giá trị của các chuō̉i só

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}} ; \quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} ; \quad \sum_{n=1}^{\infty} \frac{1}{n^{4}}
$$

24. Khai triển thành chuổi Fourier hàm s $\widehat{f} \mathrm{f}(\mathrm{x})$ tuẩn hoàn có chu kì 2π, bằng $\sin \frac{x}{2}$ với $-\pi<x \leq \pi$.
25. Khai triển thành chuỗi Fourier hàm só $\mathrm{f}(\mathrm{x})$ tuần hoàn có chu kì 2π, bằng cosan với $-\pi \leq \mathrm{x} \leq \pi$, trong đó $0<\mathrm{a}<1$. Suy ra đẳng thức

$$
\operatorname{cotg} \pi a=\frac{1}{\pi a}+\frac{2 a}{\pi} \sum_{n=1}^{\infty} \frac{1}{a^{2}-n^{2}}
$$

27.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
26. Khai triển thành chuỗi Fourier hàm số $\mathrm{f}(\mathrm{x})$ tuần hoàn có chu kì $2 l$, bằng e^{x} với $-l \leq \mathrm{x} \leq l$.
27. Khai triển thành chuỗi Fourier hàm só $\mathrm{f}(\mathrm{x})$ xác định trên đoạn $[0, \pi]$, cho bởi :

$$
f(x)=\left\{\begin{array}{l}
x \text { nếu } 0 \leq x \leq \frac{\pi}{2} \\
\frac{\pi}{2} \text { né́u } \frac{\pi}{2}<x \leq \pi
\end{array}\right.
$$

28. Cho hàm só

$$
f(x)=\sum_{n=1}^{\infty} \frac{\sin ^{3} n x}{n!}
$$

1) Chứng minh rằng hàm số $f(x)$ liên tục và khả vi liên tục trên R.
2) Khai triển hàm số $\mathrm{f}(\mathrm{x})$ thành chuối Fourier. Suy ra biếu thức của $f(x)$.

B. LỜI GIẢI

1. 2) Số hạng tổng quát $\mathrm{u}_{\mathrm{n}}=\frac{2 \mathrm{n}^{2}+1}{\mathrm{n}^{2}+\mathrm{n}+1}$ dần tới $2 \neq 0 \mathrm{khi} \mathrm{n} \rightarrow \infty$. Từ điều kiện cấn của sự hội tụ của chuỗi số suy ra rằng chuỗi só $\sum_{n=1}^{\infty} u_{n}$ phân kì.
2) $u_{n}=\sqrt{n^{2}+n}-n=\frac{n}{\sqrt{n^{2}+n}+n} \sim \frac{n}{2 n}=\frac{1}{2} \neq 0$ khi $n \rightarrow \infty$. Vạy chuỗi sơ đã cho phân kì.
3) $\mathrm{u}_{\mathrm{n}}=\operatorname{arctg} \frac{\mathrm{n}^{2}-1}{\mathrm{n}^{2}+1} \rightarrow \operatorname{arctg} 1=\frac{\pi}{4} \neq 0$ khi $\mathrm{n} \rightarrow \infty$. Chuō̃i só đã cho phân kì.
4) $u_{n}=\frac{2^{n}+n}{3^{n}+n^{3}+3} \sim\left(\frac{2}{3}\right)^{n}$, khi $n \rightarrow \infty$. Vi $\frac{2}{3}<1$, chuói só $\sum_{n=1}^{\infty}\left(\frac{2}{3}\right)^{n}$
hội tư, nên chuõ̃i só đà cho hợitu.
27.0.0.1 downiloaded 60384.pdf at Tưe Jul 31 08:30:34 ICT 2012
5) $\mathrm{u}_{\mathrm{n}}=\frac{(\mathrm{n}+1)(\mathrm{n}+2)}{\mathrm{n}^{2}\left(\mathrm{n}^{2}+3\right)} \sim \frac{1}{\mathrm{n}^{2}}$ khi $\mathrm{n} \rightarrow \infty$.
$\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ là chuỗi số Riemann với $\alpha=2>1$, nó hội tụ. Do đó chuỗi só đã cho hội tụ.
6) $\mathrm{u}_{\mathrm{n}}=1-\cos \frac{1}{\sqrt{\mathrm{n}}}=2 \sin ^{2} \frac{1}{2 \sqrt{\mathrm{n}}} \sim \frac{1}{2 \mathrm{n}}$ khi $\mathrm{n} \rightarrow \infty$.
$\sum_{n=1}^{\infty} \frac{1}{n}$ là chuỗi số điều hoà, nó phân kì. Do đó chuỗi số đā cho phân kì.
7) $\mathrm{u}_{\mathrm{n}}=\ln \left(1+\operatorname{tg} \frac{1}{\mathrm{n}^{2}}\right) \sim \operatorname{tg} \frac{1}{\mathrm{n}^{2}} \sim \frac{1}{\mathrm{n}^{2}}$ khi $\mathrm{n} \rightarrow \infty$. Vậy chuỗi só đã cho hợi tụ.
8) $u_{n}=\frac{1}{n} \sin \frac{\pi}{\sqrt{2 n}} \sim \frac{\pi}{\sqrt{2}} \frac{1}{n^{\frac{3}{2}}}$ khi $n \rightarrow \infty$. Chuōii só $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}$ hội tụ.

Vậy chuỗi số đã cho hội tụ.
9) $u_{n}=\frac{\sqrt{n(n+2)}}{n^{2}+3 \ln n} \sim \frac{1}{n}$ khi $n \rightarrow \infty$. Chuōi số đã cho phấn kì.
10) Vì $-1 \leq \operatorname{cosn} \leq 1, \forall n \in N$, nên $\frac{1}{n^{\alpha}} \leq u_{n} \leq \frac{3}{n^{\alpha}}, \forall n \in N$.

Các chuối sơ $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}, \sum_{n=1}^{\infty} \frac{3}{n^{\alpha}}$ cùng hội tụ nếu $\alpha>1$, cùng phân kì nếu $\alpha \leq 1$. Vậy chuỗi sơ đā cho hợi tụ nẽ́u $\alpha>1$, phân kì nếu $\alpha \leq 1$.
2. 1) $u_{n}=\frac{1}{\sqrt{n}}\left(\mathrm{e}^{\frac{1}{n}}-1\right)-\frac{1}{\sqrt{\mathrm{n}}} \cdot \frac{1}{\mathrm{n}}=\frac{1}{\mathrm{n}^{\frac{3}{2}}}$ khi $\mathrm{n} \rightarrow \infty$.

Vậy chuổi số đã cho hội tụ.
2) Khin $n \rightarrow \infty$, ta có

$$
\ln \frac{n^{2}+\sqrt{n}}{n^{2}-n}=\ln \left(1+\frac{n+\sqrt{n}}{n^{2}-n}\right) \sim \frac{n+\sqrt{n}}{n^{2}-n} \sim \frac{n}{n^{2}}=\frac{1}{n}, \operatorname{tg} \frac{1}{n^{2}} \sim \frac{1}{n^{2}}
$$

Do đó

$$
\mathrm{u}_{\mathrm{n}} \sim \frac{1}{\mathrm{n}^{3}} \text { khi } \mathrm{n} \rightarrow \infty
$$

Vậy chuỗi số đā cho hội tụ.
3) Nếu $k>1, u_{n}=\frac{k^{n}}{n^{k}} \rightarrow+\infty$ khi $n \rightarrow \infty$, vậy chuỗi só phân kì.

Nếu $\mathrm{k}=1, \mathrm{u}_{\mathrm{n}}=\frac{\mathrm{I}}{\mathrm{n}}$. Chuỡi sớ đã cho là chuỗi số điều hoà, nó phân kì.
Nếu $\mathbf{k}<1$, ta có $\mathrm{n}^{2} \mathbf{u}_{\mathrm{n}}=\mathbf{n}^{2-\mathrm{k}} . \mathrm{k}^{\mathrm{n}} \rightarrow 0$ khi $\mathrm{n} \rightarrow \infty$. Vậy với mọi sơ $\mathrm{C}>0$ cho trước, tồn tại số nguyên dương n_{o} sao cho với $\mathrm{n} \geq \mathrm{n}_{\mathrm{o}}$ ta có

$$
\mathrm{n}^{2} \mathrm{u}_{\mathrm{n}} \leq \mathrm{C} \Rightarrow \mathrm{u}_{\mathrm{n}} \leq \frac{\mathrm{C}}{\mathrm{n}^{2}}
$$

Chuồi só $\sum_{n=1}^{\infty} \frac{C}{n^{2}}$ hội tụ, vậy chuỗi só đã cho hội tụ.
Tóm lại chuới só đã cho hợi tụ khi $k<1$, phân kì khi $k \geq 1$. Bài . này cūng có thể giải được bằng cách dùng quy tắc Cauchy. Ta có

$$
\sqrt[n]{u_{n}}=\frac{k}{n^{\frac{k}{n}}}=k \cdot e^{-\frac{k}{n} \ln n} \rightarrow k \text { khi } n \rightarrow \infty, \text { vì } \frac{k}{n} \ln n \rightarrow 0 \text { khi } n \rightarrow \infty
$$

Do đó chuỗi số đã cho hội tụ khi $\mathrm{k}<1$, phân kì khi $\mathrm{k}>1$; còn khi $\mathrm{k}=1$, ta có chuỗi só điều hoà, nó phân kì.
4) Giả sử $\mathrm{b}>1$. Khi đó $\mathrm{n}+\mathrm{b}^{\mathrm{n}} \sim \mathrm{b}^{\mathrm{n}}$ khi $\mathrm{n} \rightarrow \infty$, do đó $\mathrm{u}_{\mathrm{n}} \sim\left(\frac{\mathrm{a}}{\mathrm{b}}\right)^{\mathrm{n}}$.

Vậy chuỗi số đā cho hội tụ nếu $\mathrm{a}<\mathrm{b}$, phân kì nếu $\mathrm{a} \geq \mathrm{b}$.
27.0.0.1 dowploaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

Né́u $b \leq 1$, thì $u_{n}=\frac{a^{n}}{n+b^{n}} \sim \frac{a^{n}}{n}$ khi $n \rightarrow \infty$. Chuỗi số đã cho hội tụ khi $\mathrm{a}<1$, phân kì khi $\mathrm{a} \geq 1$.
Tóm lại chuỗi số hợi tụ nếu ($a<b$ và $b>1$) hoặc $(a<1$ và $b \leq 1)$.
5) $\mathrm{u}_{\mathrm{n}}=\ln \frac{1}{\sqrt{\mathrm{n}}}-\ln \sin \frac{1}{\sqrt{\mathrm{n}}}=-\ln \frac{\sin \frac{1}{\sqrt{\mathrm{n}}}}{\frac{1}{\sqrt{\mathrm{n}}}}$.

Theo cong thức khai triển hữu hạn của hàm só $\sin x$, ta có

$$
\sin x=x-\frac{x^{3}}{6}+o\left(x^{3}\right)
$$

trong đó $o\left(x^{3}\right)$ là một vô cùng bé bậc cao hơn x^{3} khi $x \rightarrow 0$. Vậy khi $\mathrm{n} \rightarrow \infty$

$$
u_{n}=-\ln \left(\frac{\frac{1}{\sqrt{n}}-\frac{1}{6 n \sqrt{n}}+o\left(\frac{1}{n \sqrt{n}}\right)}{\frac{1}{\sqrt{n}}}\right)=-\ln \left(1-\frac{1}{6 n}+o\left(\frac{1}{n}\right)\right)
$$

Do đó

$$
u_{n} \sim-\ln \left(1-\frac{1}{6 n}\right) \sim \frac{1}{6 n}
$$

Chuỗi số $\sum_{n=1}^{\infty} \frac{1}{6 n}$ phân kì, vậy chuồi só đã cho phân kì.
6) Ta có

$$
\mathrm{n}^{\alpha} \mathrm{u}_{\mathrm{n}}=\mathrm{n}^{\alpha-2} \ln \mathrm{n} \rightarrow 0 \text { khi } \mathrm{n} \rightarrow \infty \text { nếu } \alpha<2
$$

Lá́y một só α sao cho $1<\alpha<2$. Vì $n^{\alpha} u_{n} \rightarrow 0$ khi $n \rightarrow \infty$, nên tồn tai một sốnguyen dương n_{0} sao cho khi $n>n_{0}$

$$
\mathrm{n}^{\alpha} \mathrm{u}_{\mathrm{n}}<1 \Rightarrow \mathrm{u}_{\mathrm{n}}<\frac{1}{\mathrm{n}^{\alpha}}
$$

Chuỗi só $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ hội tụ (vì đã chọn $\alpha>1$), nên chuồi số đã cho hội tụ.
Cũng có thể nhận xét rằng chuỗi số có số hạng tổng quát $u_{n}=\frac{\ln n}{n^{2}}=\frac{1}{n^{2}(\ln n)^{-1}}$ là chuối Bertrand với $\alpha=2>1$, nó hội tụ.
7) Ta có

$$
0 \leq u_{n}=\int_{0}^{\frac{1}{n}} \frac{\sqrt{x}}{\sqrt{1+x^{2}}} d x \leq \int_{0}^{\frac{1}{n}} \sqrt{x} d x=\left.\frac{2}{3} x^{\frac{3}{2}}\right|_{0} ^{\frac{1}{n}}=\frac{2}{3} \cdot \frac{1}{n^{\frac{3}{2}}}
$$

Vậy chuỗi sớ đã cho hội tụ.
8) Ta có

$$
0 \leq u_{n}=\int_{n}^{n+\frac{1}{2}} \frac{d x}{\sqrt{x^{4}+1}} \leq \frac{1}{2} \cdot \frac{1}{\sqrt{n^{4}+1}}
$$

vì ta có $\forall x \in\left[n, n+\frac{1}{2}\right]$

$$
\frac{1}{\sqrt{x^{4}+1}} \leq \frac{1}{\sqrt{n^{4}+1}}
$$

Nhung khi $n \rightarrow \infty$

$$
\frac{1}{\sqrt{n^{4}+1}} \sim \frac{1}{n^{2}}
$$

Vậy chuỗi só đã cho hội tụ.
27.0.0.1 dpyfnloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
9) Ta có

$$
\frac{n^{2}}{n^{2}+a n+b}=1-\frac{a n+b}{n^{2}+a n+b}
$$

Do đó

$$
u_{n}=\cos \left[\frac{\pi}{2}\left(1-\frac{a n+b}{n^{2}+a n+b}\right)\right]=\sin \left(\frac{\pi}{2} \frac{a n+b}{n^{2}+a n+b}\right) .
$$

Khi $n \rightarrow \infty$, nếu $a \neq 0$ thì $u_{n} \sim \frac{\pi}{2} \frac{a n+b}{n^{2}+a n+b} \sim \frac{\pi a}{2 n}$, chuỗi só đã cho phân kì. Nếu $a=0, b \neq 0$ thì $u_{n} \sim \frac{\pi b}{2 n^{2}}$ khi $n \rightarrow \infty$, chuỗi só hội tụ. Nếu $a=b=0$ thì $u_{n}=0$, chuổi số hội tụ. Tóm lại chuổi só́ đã cho hội tụ khi và chỉ khi $\mathrm{a}=0$.
10) $u_{n}=n a^{\sqrt{n}}(a>0)$.

Nếu a $\geq 1, u_{n} \rightarrow+\infty$ khi $n \rightarrow \infty$, vậy chuỗi só phân kì. Nếu $0<a<1$, vì $u_{n}=n e^{\sqrt{n} \ln a}$ và vì lna <0, ta có

$$
n^{2} u_{n}=n^{3} e^{\sqrt{n} \ln a} \rightarrow 0 \text { khi } n \rightarrow \infty
$$

Vậy tồn tại số nguyên dương n_{o} sao cho với $\mathrm{n}>\mathrm{n}_{\mathrm{o}}$ ta có

$$
\mathrm{n}^{2} \mathrm{u}_{\mathrm{n}} \leq 1 \Rightarrow \mathrm{u}_{\mathrm{n}} \leq \frac{1}{\mathrm{n}^{2}}
$$

Chuồi só $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ hội tụ, do đó chuỗi sớ $\sum_{n=1}^{\infty} u_{n}$ hội tụ.
Tóm lại chưõi sớ đã cho hội tụ khi $0<a<1$, phân kì khi $a \geq 1$.
27.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 I'CT 2012

Ta có công thức khai triển hữu hạn

$$
(1+x)^{\alpha}=1+\alpha x+\frac{\alpha(\alpha-1)}{2} x^{2}+o\left(x^{2}\right)
$$

trong đó $\mathrm{o}\left(\mathrm{x}^{2}\right)$ là một vô cùng bé cấp cao đói với $\mathrm{x}^{2} \mathrm{khi} \mathrm{x} \rightarrow 0$. Do đó khi $\mathrm{n} \rightarrow \infty$

$$
u_{n} \sim n\left(1+\frac{a}{3 n^{2}}-\frac{a^{2}}{9 n^{4}}\right)-n\left(1+\frac{3}{2 n^{2}}-\frac{9}{8 n^{4}}\right)=\frac{2 a-9}{6 n}+\frac{81-8 a^{2}}{72 n^{3}}
$$

Vậy nếu $2 a-9 \neq 0$ thì $u_{n} \sim \frac{2 a-9}{6 n}$, chuôii số đã cho phân kì ; còn nếu $2 \mathrm{a}-9=0$, tức là $\mathrm{a}=\frac{9}{2}$, thì $\mathrm{u}_{\mathrm{n}} \sim-\frac{9}{8 \mathrm{n}^{3}}$, chuỗi số đã cho hội tụ.
Tóm lại chuối số đã cho hội tụ khi $\mathrm{a}=\frac{9}{2}$, phân kì khi $\mathrm{a} \neq \frac{9}{2}$.
3. 1) $u_{n}=\frac{1}{(2 n-1)(2 n+1)} \sim \frac{1}{4 n^{2}}$ khi $n \rightarrow \infty$. Vậy chuỗi sớ đã cho hội tụ. Ta có

$$
u_{n}=\frac{1}{2}\left(\frac{1}{2 n-1}-\frac{1}{2 n+1}\right)
$$

Do đó

$$
\begin{aligned}
S_{n} & =\sum_{k=1}^{n} u_{k}=\frac{1}{2}\left(1-\frac{1}{3}\right)+\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}\right)+\cdots+\frac{1}{2}\left(\frac{1}{2 n-1}-\frac{1}{2 n+1}\right)= \\
& =\frac{1}{2}\left(1-\frac{1}{2 n+1}\right)
\end{aligned}
$$

Vậy

$$
S=\lim _{n \rightarrow \infty} S_{n}=\frac{1}{2}
$$

2) $\mathrm{u}_{\mathrm{n}}=\frac{1}{\mathrm{n}^{2}+\mathrm{n}} \sim \frac{1}{\mathrm{n}^{2}}$ khi $\mathrm{n} \rightarrow \infty$.
27.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

Vậy chuỗi số đã cho hội tụ. Ta có

$$
u_{n}=\frac{1}{n}-\frac{1}{n+1}
$$

Do đó

$$
\begin{aligned}
& S_{n}=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\ldots+\left(\frac{1}{n}-\frac{1}{n+1}\right)=1-\frac{1}{n+1} \\
& S=\lim _{n \rightarrow \infty} S_{n}=1
\end{aligned}
$$

3) $u_{n}=\frac{2 n+1}{n^{2}(n+1)^{2}} \sim \frac{2}{n^{3}}$ khi $n \rightarrow \infty$.

Chuỗi số dā cho hội tụ. Ta có

$$
u_{n}=\frac{1}{n^{2}}-\frac{1}{(n+1)^{2}}
$$

Do đó
$S_{n}=\left(1-\frac{1}{2^{2}}\right)+\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)+\cdots+\left(\frac{1}{n^{2}}-\frac{1}{(n+1)^{2}}\right)=1-\frac{1}{(n+1)^{2}}$.
$S=\lim _{n \rightarrow \infty} S_{n}=1$.
4) Chuỗi số $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{2 n+1}{n(n+1)}$ là một chuôi số đan dấu,
$\left|u_{n}\right|=\frac{2 n+1}{n(n+1)}$ giảm khi n tāng, giảm tới 0 khi $n \rightarrow \infty$.
Vậy chuỗi số ấy hội tụ theo định lí Leibniz. Ta có

$$
\frac{2 n+1}{n(n+1)}=\frac{1}{n}+\frac{1}{n+1}
$$

Do đó
27.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

$$
\begin{aligned}
S_{n} & =\left(1+\frac{1}{2}\right)-\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)-\ldots+(-1)^{n+1}\left(\frac{1}{n}+\frac{1}{n+1}\right) \\
& =1+(-1)^{n+1} \frac{1}{n+1} . \\
S & =\lim _{n \rightarrow \infty} S_{n}=1 .
\end{aligned}
$$

5) $u_{n}=\operatorname{arctg} \frac{1}{n^{2}+n+1} \sim \frac{1}{n^{2}+n+1} \sim \frac{1}{n^{2}}$ khi $n \rightarrow \infty$. Vặy chuỗi só đã cho họ̣i tụ. Ta có

$$
u_{n}=\operatorname{arctg} \frac{1}{n^{2}+n+1}=\operatorname{arctg} \frac{\frac{1}{n(n+1)}}{1+\frac{1}{n(n+1)}}=\operatorname{arctg} \frac{1}{n}-\operatorname{arctg} \frac{1}{n+1}
$$

Do đó

$$
\begin{aligned}
S_{n} & =\left(\operatorname{arctg} 1-\operatorname{arctg} \frac{1}{2}\right)+\left(\operatorname{arctg} \frac{1}{2}-\operatorname{arctg} \frac{1}{3}\right)+\ldots+\left(\operatorname{arctg} \frac{1}{n}-\operatorname{arctg} \frac{1}{n+1}\right)= \\
& =\operatorname{arctg} 1-\operatorname{arctg} \frac{1}{n+1} . \\
S & =\lim _{n \rightarrow \infty} S_{n}=\operatorname{arctg} 1=\frac{\pi}{4} .
\end{aligned}
$$

6) $u_{n}=\frac{n}{n^{4}+n^{2}+1} \sim \frac{1}{n^{3}}$ khi $n \rightarrow \infty$.

Do đó chuōi số đã cho hội tụ. Ta có

$$
n^{4}+n^{2}+1=(n+1)^{2}-n^{2}=\left(n^{2}-n+1\right)\left(n^{2}+n+1\right)
$$

Suy ra

$$
\begin{aligned}
\frac{n}{n^{4}+n^{2}+1} & =\frac{1}{2}\left(\frac{1}{n^{2}-n+1}-\frac{1}{n^{2}+n+1}\right) \\
& =\frac{1}{2}\left(\frac{1}{n^{2}-n+1}-\frac{1}{(n+1)^{2}-(n+1)+1}\right)
\end{aligned}
$$

27.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

Do đó

$$
\begin{aligned}
& S_{n}=\frac{1}{2}\left[\left(1-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{7}\right)+\cdots+\left(\frac{1}{n^{2}-n+1}-\frac{1}{(n+1)^{2}-(n+1)+1}\right)\right]= \\
&=\frac{1}{2}\left[1-\frac{1}{(n+1)^{2}-(n+1)+1}\right] \\
& S=\lim _{n \rightarrow \infty} S_{n}=\frac{1}{2} . \\
& \text { 7) } u_{n}=\ln \left(1-\frac{1}{n^{2}}\right) \sim-\frac{1}{n^{2}} \text { khi } n \rightarrow \infty .
\end{aligned}
$$

Do đó chuỗi só đã cho hội tụ. Ta có

$$
u_{n}=\ln \frac{(n-1)(n+1)}{n^{2}}
$$

Suy ra

$$
\begin{aligned}
& S_{n}=\ln \prod_{k=2}^{n} \frac{(k-1)(k+1)}{k^{2}}=\ln \frac{n+1}{2 n} \\
& S_{n}=\lim _{n \rightarrow \infty} S_{n}=\ln \frac{1}{2}=-\ln 2
\end{aligned}
$$

8) $u_{n}=\frac{\sin \frac{1}{n(n+1)}}{\cos \frac{1}{n} \cdot \cos \frac{1}{n+1}} \sim \frac{1}{n^{2}}$ khi $n \rightarrow \infty$.

Do đó chuởi só đã cho hội tụ. Ta có

$$
u_{n}=\frac{\sin \left(\frac{1}{n}-\frac{1}{n+1}\right)}{\cos \frac{1}{n} \cdot \cos \frac{1}{n+1}}=\operatorname{tg} \frac{1}{n}-\operatorname{tg} \frac{1}{n+1} .
$$

Suy ra

$$
\begin{aligned}
S_{n} & =\left(\operatorname{tg} 1-\operatorname{tg} \frac{1}{2}\right)+\left(\operatorname{tg} \frac{1}{2}-\operatorname{tg} \frac{1}{3}\right)+\ldots+\left(\operatorname{tg} \frac{1}{n}-\operatorname{tg} \frac{1}{n+1}\right) \\
& =\operatorname{tg} 1-\operatorname{tg} \frac{1}{n+1} \\
S & =\lim _{n \rightarrow \infty} S_{n}=\operatorname{tg} 1 .
\end{aligned}
$$

9) Ta có $\forall \alpha \in\left(-\frac{\pi}{3}, \frac{\pi}{3}\right), \forall \mathrm{n} \geq 0$

$$
2 \cos \frac{\alpha}{2^{n}}-1=1-2\left(1-\cos \frac{\alpha}{2^{n}}\right)=1-4 \sin ^{2} \frac{\alpha}{2^{n+1}}>0
$$

Do đó

$$
u_{n}=\ln \left(2 \cos \frac{\alpha}{2^{n}}-1\right) \sim-4 \frac{\alpha^{2}}{2^{2 n+2}}=-\frac{\alpha^{2}}{4^{n}} .
$$

Vậy chuōi số đã cho hội tụ. Ta có $\forall \mathrm{x} \in\left(-\frac{\pi}{3}, \frac{\pi}{3}\right)$

$$
2 \cos x-1=\frac{2 \cos 2 x+1}{2 \cos x+1}
$$

Suy ra

$$
\begin{aligned}
S_{n} & =\sum_{k=0}^{n} \ln \left(2 \cos \frac{\alpha}{2^{k}}-1\right)=\sum_{k=0}^{\infty} \ln \frac{2 \cos \frac{\alpha}{2^{k-1}}+1}{2 \cos \frac{\alpha}{2^{k}}+1}= \\
& =\ln \prod_{k=0}^{n} \frac{2 \cos \frac{\alpha}{2^{k-1}}+1}{2 \cos \frac{\alpha}{2^{k}}+1}=\ln \frac{2 \cos 2 \alpha+1}{2 \cos \frac{\alpha}{2^{n}}+1} \\
S & =\lim _{n \rightarrow \infty} S_{n}=\ln \frac{2 \cos 2 \alpha+1}{3} .
\end{aligned}
$$

10) Ta có *

$$
\mathrm{n}+1=\mathrm{n}\left(1+\frac{1}{\mathrm{n}}\right), \mathrm{n}+2=\mathrm{n}\left(1+\frac{2}{\mathrm{n}}\right) .
$$

Do đó

$$
u_{n}=(1+a+b) \ln n+a \ln \left(1+\frac{1}{n}\right)+b \ln \left(1+\frac{2}{n}\right)
$$

Threo công thức khai triẻn hưư hạn của hàm số $\ln (1+x)$, ta có

$$
\begin{aligned}
& \ln \left(1+\frac{1}{n}\right) \sim \frac{1}{n}-\frac{1}{2 n^{2}} \\
& \ln \left(1+\frac{2}{n}\right) \sim \frac{2}{n}-\frac{2}{n^{2}}
\end{aligned}
$$

Suy ra

$$
u_{n}-(1+a+b) \ln n+\frac{a+2 b}{n}-\frac{a+4 b}{n^{2}}
$$

Vậy chuổi só đã cho hội tụ khi và chỉ khi

$$
\left\{\begin{array}{l}
a+b+1=0 \\
a+2 b=0
\end{array}\right.
$$

Giải hệ phương trình ấy, ta được $\mathrm{a}=-2, \mathrm{~b}=1$. Với các giá trị ấy, ta dược

$$
\begin{aligned}
S_{n} & =(\ln 1-2 \ln 2+\ln 3)+(\ln 2-2 \ln 3+\ln 4)+(\ln 3-2 \ln 4+\ln 5)+ \\
& \quad+\ldots+[\ln n-2 \ln (\mathrm{n}+1)+\ln (\mathrm{n}+2)]= \\
& =-\ln 2+\ln \frac{\mathrm{n}+2}{\mathrm{n}+1} . \\
S & =\lim _{\mathrm{n} \rightarrow \infty} S_{\mathrm{n}}=-\ln 2 .
\end{aligned}
$$

4. 5) Áp dụng quy tắc D'Alembert, ta có

$$
\frac{u_{n+1}}{u_{n}}=\frac{(2 n-1) \cdot 2^{2 n-1}}{(2 n+1) \cdot 2^{2 n+1}}=\frac{2 n-1}{2 n+1} \cdot \frac{1}{4}
$$

Do đó

$$
\lim _{n \rightarrow \infty} \frac{u_{n+1}}{u_{n}}=\frac{1}{4} \lim _{n \rightarrow \infty} \frac{2 n-1}{2 n+1}=\frac{1}{4}<1
$$

Vậy chuổi số dã cho hội tụ.
2) Ta có

$$
\frac{u_{n+1}}{u_{n}}=\frac{(n+1)^{2}}{(n+1)!} \cdot \frac{n!}{n^{2}}=\frac{1}{n+1} \cdot \frac{(n+1)^{2}}{n^{2}}
$$

Do đó

$$
\lim _{n \rightarrow \infty} \frac{u_{n+1}}{u_{n}}=0<1
$$

Chuổi số dã cho hội tụ.
3) Ta có

$$
u_{n}=\frac{n^{2}}{2^{n}+n}-\frac{n^{2}}{2^{n}} \text { khi } n \rightarrow \infty
$$

Đạt $\mathrm{v}_{\mathrm{n}}=\frac{\mathrm{n}^{2}}{2^{\mathrm{n}}}$, ta có

$$
\frac{\mathrm{v}_{\mathrm{n}+1}}{\mathrm{v}_{\mathrm{n}}}=\frac{1}{2} \frac{(\mathrm{n}+1)^{2}}{\mathrm{n}^{2}}
$$

Do đó

$$
\lim _{n \rightarrow \infty} \frac{v_{n+1}}{v_{n}}=\frac{1}{2}<1
$$

Vậy chuổi só $\sum_{n=1}^{\infty} \mathrm{v}_{\mathrm{n}}$ hội tụ, nên chuỗi số đă cho hội tụ.
4) Ta có

$$
\frac{u_{n+1}}{u_{n}}=\frac{2(n+1)}{(n+1)^{n+1}} \cdot n^{n}=\frac{2}{\left(1+\frac{1}{n}\right)^{n}}
$$

Do đó

$$
\lim _{n \rightarrow \infty} \frac{u_{n+1}}{u_{n}}=\frac{2}{e}<1 .
$$

Vậy chuôi số dã cho hội tụ.
5) Ta có

$$
\frac{u_{n+1}}{u_{n}}=a \cdot \frac{n^{2}+1}{(n+1)^{2}+1}
$$

Do đó

$$
\lim _{n \rightarrow \infty} \frac{u_{n+1}}{u_{n}}=a
$$

Vậy chuồi số dā cho hội tụ nếu $a<1$, phân kì nếu $a>1$. Nếu $a=1$, $\mathrm{u}_{\mathrm{n}}=\frac{1}{\mathrm{n}^{2}+1} \sim \frac{1}{\mathrm{n}^{2}}$ khi $\mathrm{n} \rightarrow \infty$, chuổi số hội tụ.
6) Áp dụng quy tắc Cauchy, ta có

$$
\sqrt[n]{u_{n}}=\frac{2 n^{2}-1}{3 n^{2}+2}
$$

Do đó

$$
\lim _{n \rightarrow \infty} \sqrt[n]{u_{n}}=\frac{2}{3}<1
$$

Chuổi sớ đã cho hợi tụ.
7) Ta có

$$
\sqrt[n]{u_{n}}=\left(\frac{n-1}{2 n-1}\right)^{\ln n}
$$

Do đó

$$
\lim _{n \rightarrow \infty} \sqrt{u_{n}}=\lim _{n \rightarrow \infty}\left(\frac{1}{2}\right)^{\ln n}=0<1
$$

Chuōi só đă cho hợi tụ.
8) Ta có

$$
\sqrt[n]{u_{n}}=\operatorname{arctg} \frac{1}{n}
$$

Do đó

$$
\lim _{n \rightarrow \infty} \sqrt[n]{u_{n}}=\lim _{n \rightarrow \infty} \operatorname{arctg} \frac{1}{n}=0<1
$$

Chuổi số đā cho hội tụ.
9) Ta có

$$
\frac{u_{n+1}}{u_{n}}=\frac{[(n+1)!]^{2}}{(2 n+2)!} \cdot \frac{(2 n)!}{[n!]^{2}}=\frac{n+1}{2(2 n+1)}
$$

Do đó

$$
\lim _{n \rightarrow \infty} \frac{u_{n+1}}{u_{n}}=\frac{1}{4}
$$

Chuỗi số đã cho hội tụ.
10) Ta có

$$
\sqrt[n]{u_{n}}=\operatorname{tg}\left(a+\frac{b}{n^{2}}\right)
$$

Do dó

$$
\lim _{n \rightarrow \infty} \sqrt[n]{u_{n}}=\operatorname{tg} a .
$$

Vậy chuỗi số đā cho hội tụ nếu tga <1, tức là $a<\frac{\pi}{4}$, phân kì nếu $\operatorname{tg} a>1$, tức là $a>\frac{\pi}{4}$. Nếu $a=\frac{\pi}{4}$, ta có

$$
\sqrt[n]{u_{n}}=\operatorname{tg}\left(\frac{\pi}{4}+\frac{b}{n^{2}}\right)=\frac{1+\operatorname{tg} \frac{b}{n^{2}}}{1-\operatorname{tg} \frac{b}{n^{2}}}
$$

Khi $n \rightarrow \infty$ thì $\sqrt[n]{u_{n}} \rightarrow 1$, nhưng vì $\sqrt[n]{u_{n}}>1, \forall n$, nên u_{n} không dần tới 0 khi $\mathrm{n} \rightarrow \infty$, chuõ̃i số phân kì.
11) Ta có

$$
\sqrt[n]{u_{n}}=\left(\frac{n}{n+1}\right)^{n^{\alpha-1}}=e^{-n^{\alpha-1} \ln \left(1+\frac{1}{n}\right)}
$$

Khi $n \rightarrow \infty$, ta có

$$
-n^{\alpha-i} \ln \left(1+\frac{1}{n}\right)--n^{\alpha-1} \cdot \frac{1}{n}=-n^{\alpha-2}
$$

Nếu $\alpha>2$ thì $-\mathrm{n}^{\alpha-2} \rightarrow-\infty$ khi $\mathrm{n} \rightarrow \infty$, vậy $\sqrt[n]{\mathrm{u}_{\mathrm{n}}} \rightarrow 0<1 \mathrm{khi}$ $n \rightarrow \infty$, chuỗi số đã cho hội tụ.
Nếu $\alpha=2$ thì $-n^{\alpha-2}=-1$, vậy $\sqrt[n]{\mathrm{u}_{\mathrm{n}}} \rightarrow \frac{1}{\mathrm{e}}<1 \mathrm{khi} \mathrm{n} \rightarrow \infty$, chuỗi só đă cho hội tụ.
Nếu $\alpha<2$ thì $-\mathrm{n}^{\alpha-2} \rightarrow 0$, vậy $\sqrt[n]{u_{\mathrm{n}}} \rightarrow 1$ khi $\mathrm{n} \rightarrow \infty$, chưa thể kết Iuận dược gì. Ta viết $u_{n}=e^{v_{n}}$, trong đó $v_{n}=n^{\alpha} \ln \left(1+\frac{1}{n}\right)$
Do công thức khai triển hữu hạn của hàm $\ln (1+x)$, ta được

$$
\begin{aligned}
v_{n} & =-n^{\alpha}\left[\frac{1}{n}-\frac{1}{2 n^{2}}+o\left(\frac{1}{n^{2}}\right)\right]= \\
& =-n^{\alpha-1}+\frac{1}{2} n^{\alpha-2}+o\left(n^{\alpha-2}\right) \text { khi } n \rightarrow \infty
\end{aligned}
$$

Với $\alpha<1, \mathrm{v}_{\mathrm{n}} \rightarrow 0 \mathrm{khin} \mathrm{n} \rightarrow \infty$, do đó $\mathrm{u}_{\mathrm{n}}=\mathrm{e}^{\mathrm{v}_{\mathrm{n}}} \rightarrow 1 \neq 0$, nên chuôi só phân kì.

Với $\alpha=1, v_{n} \rightarrow-1$ khi $n \rightarrow \infty$, do đó $u_{n} \rightarrow \frac{1}{\mathrm{e}} \neq 0$, nên chuỗi só phân kì.
Với $1<\alpha<2$, ta có

$$
u_{n}=e^{-n^{\alpha-1}} \cdot e^{\frac{1}{2} n^{\alpha-2}+o\left(n^{\alpha-2}\right)} \sim e^{-n^{\alpha-1}} \text { khi } n \rightarrow \infty \text { vì } n^{\alpha-2} \rightarrow 0 .
$$

Đặt $w_{n}=e^{-\mathrm{n}^{\alpha-1}}$. Ta có

$$
\mathrm{n}^{2} \mathrm{w}_{\mathrm{n}}=\mathrm{e}^{2 \ln n-n^{\alpha-1}} \rightarrow 0 \mathrm{khi} \mathrm{n} \rightarrow \infty
$$

do đó tồn tại một số nguyên dương n_{0} sao cho với $n \geq n_{o}$ ta có

$$
\mathrm{n}^{2} \mathrm{w}_{\mathrm{n}} \leq \mathrm{l} \Rightarrow \mathrm{w}_{\mathrm{n}} \leq \frac{1}{\mathrm{n}^{2}}
$$

Vậy chuōi số $\sum_{n=1}^{\infty} w_{n}$ hội tụ, suy ra chuỗi sớ $\sum_{n=1}^{\infty} u_{n}$ hội tụ.
Tóm lại chuỡi số đã cho hội tụ với $\alpha>1$, phân kì với $\alpha \leq 1$.
12) Ta có

$$
\frac{u_{n+1}}{u_{n}}=\frac{4^{n+1}[(n+1)!]^{2}}{(2 n+2)!} \cdot \frac{(2 n)!}{4^{n}[n!]^{2}}=\frac{2 n+2}{2 n+1}
$$

Do đó

$$
\lim _{n \rightarrow \infty} \frac{u_{n+1}}{u_{n}}=1
$$

Theo quy tắc D'Alembert, chưa thể kết luận được gì. Nhưng $\frac{u_{n+1}}{u_{n}}=\frac{2 n+2}{2 n+1}>1, \forall n \in N$, do đó $u_{n+1}>u_{n}, \forall n \in N$, dãy só $\left\{u_{n}\right\}$.
là dãy tảng, u_{n} không thể dẩn tới 0 khi $n \rightarrow \infty$. Chuỗi só́ đã cho phân kì.
13) Ta có

$$
\sqrt[n]{u_{n}}=1-\frac{3}{2} \frac{\ln n}{n}
$$

Do đó

$$
\lim _{n \rightarrow \infty} \sqrt[n]{u_{n}}=1
$$

Chưa thể kết luận được gì theo quy tắc Cauchy. Ta có

$$
u_{n}=e^{n \ln \left(1-\frac{3}{2} \frac{\ln n}{n}\right)} .
$$

Theo công thức khai triển hữu hạn của hàm số $\ln (1+x)$, ta được

$$
n \ln \left(1-\frac{3}{2} \frac{\ln n}{n}\right)=-\frac{3}{2} \ln n+o(1)
$$

khi $\mathrm{n} \rightarrow \infty$. Do đó

$$
u_{n} \sim e^{-\frac{3}{2} \ln n}=\frac{1}{n^{\frac{3}{2}}}
$$

Vậy chuōii số đā cho hội tụ.
14) Chuôi số có số hạng tổng quát $u_{n}=(-1)^{n} \frac{1}{n \ln n}$ là một chuỗi só đạ dấu. Vì $\left|u_{n}\right|=\frac{1}{n \ln n}$ giàm khi n tăng và dần tới 0 khi $\mathrm{n} \rightarrow \infty$, nên chuỗi số ấy hội tụ theo định lí Leibniz. Vì chuổi số $\sum_{n=2}^{\infty}\left|u_{n}\right|=\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ là chuỗi só Bertrand với $\alpha=1, \beta=1$, nó phân . kì. Vậy chuỗi số đã cho bán hội tụ.
15) Ta có

$$
\begin{aligned}
u_{n}= & \sin \left(n \pi+\sqrt{n^{2}+1} \pi-n \pi\right)=(-1)^{n} \sin \left[\pi\left(\sqrt{n^{2}+1}-n\right)\right]= \\
= & (-1)^{n} \sin \frac{\pi}{\sqrt{n^{2}+1}+n}
\end{aligned}
$$

Vậy chuởi só́ $\sum_{n=1}^{\infty} u_{n}$ là một chuỡi số đan dấu. Vl
$\left|u_{n}\right|=\sin \frac{\pi}{\sqrt{n^{2}+1}+n}$ giàm khi n tăng và dần tới 0 khi $n \rightarrow \infty$, nên chuồi só á́y hợi tụ. Khi $n \rightarrow \infty$ ta có

$$
\left|u_{n}\right| \sim \frac{\pi}{2 n}
$$

do đó chuỗi số $\sum_{n=1}^{\infty}\left|u_{n}\right|$ phân kị̀. Vậy chuỗi số đã cho bán hợi tụ.
16) Ta có

$$
u_{n}=\sin \left(\frac{1}{n}+n\right) \pi=\sin \left(\frac{\pi}{n}+n \pi\right)=(-1)^{n} \sin \frac{\pi}{n} .
$$

Chuồi số đã cho là một chuỗi số đan dấu, thoả mãn các điều kiện của định lí Leibniz, do đó nó hội tụ. Vì

$$
\left|u_{n}\right|=\sin \frac{\pi}{n} \sim \frac{\pi}{n} \text { khi } n \rightarrow \infty
$$

nên chuỗi so $\sum_{n=1}^{\infty}\left\{\mathrm{u}_{\mathrm{n}} \mid\right.$ phân kì, chuô̄i số đã cho bán hội tụ.
17) Âp dụng quy tấc Cauchy vào chuỗi số có só hạng tởng quát là $\left|u_{n}\right|=\frac{n^{2}}{(\ln n)^{n}}$, ta co

$$
\sqrt[n]{\left|u_{n}\right|}=\frac{n^{\frac{2}{n}}}{\ln n}=\frac{e^{\frac{2}{n} \ln n}}{\ln n}
$$

Vi $\lim _{n \rightarrow \infty} \frac{2}{n} \ln n=0$, nên $\lim _{n \rightarrow \infty} e^{\frac{2}{n} \ln n}=1$, do đó

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\left|u_{n}\right|}=0<1
$$

Vạy chuôi sớ $\sum_{n=2}^{\infty}\left|u_{n}\right|$ hội tụ, chuỗi sơ $\sum_{n=2}^{\infty} u_{n}$ hợi tụ tuyệt đới.
18) Ta có

$$
u_{n}=v_{n}+w_{n}
$$

27.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
trong đó

$$
v_{n}=\frac{1}{1+n}, w_{n}=(-1)^{n} \frac{\sqrt{n}}{1+n}
$$

Chuỗi số $\sum_{n=1}^{\infty} \frac{1}{1+n}$ là một chuỗi số dương phân kì.
Chuỗi só́ $\sum_{n=1}^{\infty}(-1)^{n} \frac{\sqrt{n}}{1+n}$ là một chuối số đan dấu. Khi n tãng thì $\left|w_{n}\right|=\frac{\sqrt{n}}{1+n}$ giảm (vì hàm só $y=\frac{\sqrt{x}}{1+x}$ có đạo hàm $\left.y^{\prime}=\frac{-\frac{1}{2 \sqrt{x}}-\frac{3}{2} \sqrt{x}}{(1+x)^{2}}<0, \forall x>0\right)$ và dần tới 0 khi $n \rightarrow \infty$.
Chuổi số ấy hội tụ. Chuồi só đã cho có só hạng tổng quát là $u_{n}=v_{n}+w_{n}$, nó phân kì.
Chú ý rằng trong bài này không thể lập luận như sau : Vì $u_{n} \sim(-1)^{n} \frac{1}{\sqrt{n}}$ khi $n \rightarrow \infty$, mà chuôi só $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{\sqrt{n}}$ là mợt chuổi số đan dấu hợi tụ theo định lí Leibniz, nên chuỗi số đã cho hợi tụ. Sở đĩ như vậy, vì định lí so sánh chỉ đúng với các chuỗi só dương, mà chuỗi só đã cho không phải là chuỗi số dương.
19) Ta có bằng cách dùng công thức khai triển hữu hạn

$$
\begin{aligned}
u_{n} & =\frac{(-1)^{n}}{n+(-1)^{n+1}}=\frac{(-1)^{n}}{n}\left(1+\frac{(-1)^{n+1}}{n}\right)^{-1}= \\
& =\frac{(-1)^{n}}{n}\left(1-\frac{(-1)^{n+1}}{n}+o\left(\frac{1}{n}\right)\right)=v_{n}+w_{n}
\end{aligned}
$$

trong đó

$$
\mathrm{v}_{\mathrm{n}}=\frac{(-1)^{n}}{n}, w_{n}=\frac{l^{2}}{n^{2}}+o\left(\frac{1}{n^{2}}\right) \sim \frac{1}{n^{2}} \text { khi } n \rightarrow \infty
$$

27.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

Chuỗi $\sum_{n=1}^{\infty} \frac{(-1)^{\mathrm{n}}}{\mathrm{n}}$ là chuỗi số đan đấu hội tụ theo định lí Leibniz,
chuỗi $\sum_{n=1}^{\infty} w_{n}$ là chuỗi sớ dương hội tụ vì $w_{n} \sim \frac{1}{n^{2}}$. Vậy chuồi só đā cho hội tụ.
20) Ta có

$$
\begin{aligned}
u_{n} & =\frac{(-1)^{n}}{\sqrt{n}+(-1)^{n+1}}=\frac{(-1)^{n}}{\sqrt{n}}\left(1+\frac{(-1)^{n+1}}{\sqrt{n}}\right)^{-1}= \\
& =\frac{(-1)^{n}}{\sqrt{n}}\left(1+\frac{(-1)^{n}}{\sqrt{n}}+0\left(\frac{1}{\sqrt{n}}\right)\right)=v_{n}+w_{n}
\end{aligned}
$$

trong đó

$$
\mathrm{v}_{\mathrm{n}}=\frac{(-1)^{\mathrm{n}}}{\sqrt{\mathrm{n}}}, \mathrm{w}_{\mathrm{n}}=\frac{1}{\mathrm{n}}+o\left(\frac{1}{\mathrm{n}}\right)-\frac{1}{\mathrm{n}} \text { khi } \mathrm{n} \rightarrow \infty .
$$

Chuỗi $\sum_{n=1}^{\infty} v_{n}$ là chuỗi số đan đấu hội tụ, chuō̃i $\sum_{n=1}^{\infty} w_{n}$ là chuōi số phân kì vì $w_{n} \sim \frac{1}{n}$. Vậy chuōii số đã cho phân kì.
21) Ta có

$$
\begin{aligned}
u_{n} & =\sqrt{n+(-1)^{n}}-\sqrt{n}=\sqrt{n}\left[\left(1+\frac{(-1)^{n}}{n}\right)^{\frac{1}{2}}-1\right]= \\
& =\sqrt{n}\left(\frac{(-1)^{n}}{2 n}-\frac{1}{8 n^{2}}+o\left(\frac{1}{n^{2}}\right)\right)=v_{n}+w_{n}
\end{aligned}
$$

trong đo

$$
v_{n}=\frac{(-1)^{n}}{2 \sqrt{n}}, w_{n}=-\frac{1}{8 n^{\frac{3}{2}}}+0\left(\frac{1}{n^{\frac{3}{2}}}\right) \sim-\frac{1}{8 n^{\frac{3}{2}}} \text { khi } n \rightarrow \infty .
$$

27.0.0.1 d 966 wnloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

Chuỗi $\sum_{n=1}^{\infty} v_{n}$ là chuỗi sớ đan đấu hội tụ, chuổi $\sum_{n=1}^{\infty} w_{n}$ là chuỗi số họi tụ vì $\mathbf{w}_{\mathbf{n}} \sim-\frac{1}{8 \mathbf{n}^{\frac{3}{2}}}$. Vậy chuồi só đā cho hội tụ.
22) Ta có

$$
u_{n}=\ln \left(1+\frac{(-1)^{n-1}}{n^{\alpha}}\right)=\frac{(-1)^{n-1}}{n^{\alpha}}-\frac{1}{2 n^{2 \alpha}}+o\left(\frac{1}{n^{2 \alpha}}\right)=v_{n}+w_{n}
$$

trong đó

$$
v_{n}=\frac{(-1)^{n-1}}{n^{\alpha}}, w_{n}=-\frac{1}{2 n^{2 \alpha}}+o\left(\frac{1}{n^{2 \alpha}}\right) \sim-\frac{1}{2 n^{2 \alpha}}
$$

khi $n \rightarrow \infty$. Chuỗi $\sum_{n=1}^{\infty} \mathrm{v}_{\mathrm{n}}$ là chuōi số đan dáu hội tụ, chuỗi
$\sum_{n=1}^{\infty} w_{n}$ hội tụ khi và chỉ khi $2 \alpha>1 \Rightarrow \alpha>\frac{1}{2}$. Vậy chuỗi só đă cho
hội tụ với $\alpha>\frac{1}{2}$.
5. 1) Với $\mathrm{f}_{\mathrm{n}}(\mathrm{x})=\frac{\mathrm{x}}{\mathrm{x}+\mathrm{n}}$, ta có nếu $\mathrm{x}=0, \mathrm{f}_{\mathrm{n}}(0)=0, \forall \mathrm{n}$, nên

$$
\lim _{n \rightarrow \infty} f_{n}(0)=0=f(0) .
$$

Nếu $\mathrm{x}>0, \lim _{\mathrm{n} \rightarrow \infty} \mathrm{f}_{\mathrm{n}}(\mathrm{x})=0=\mathrm{f}(\mathrm{x})$. Vậy tại mọi điển của đoạn $[0,1]$, dãy hàm số $\left\{f_{n}(x)\right\}$ hội tụ tới 0 . Vì

$$
\left|f_{n}(x)-0\right|=\left|\frac{x}{x+n}\right| \leq \frac{1}{n}, \forall x \in[0,1]
$$

27.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
mà $\lim _{n \rightarrow \infty} \frac{1}{n}=0$, nên $f_{n}(x)$ họi tụ đều trên đoạn $[0,1]$ tới 0 .
Với $\mathrm{g}_{\mathrm{n}}(\mathrm{x})=\frac{\mathrm{nx}}{1+\mathrm{nx}}$, ta có $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{g}_{\mathrm{n}}(0)=0$, còn với $\mathrm{x}>0$ thì $\lim _{n \rightarrow \infty} g_{n}(x)=1$. Vậy trên doạn [0, 1], dāy $g_{n}(x)$ hội tụ tới

$$
g(x)=\left\{\begin{array}{l}
0 \text { nếu } x=0 \\
1 \text { nếu } 0<x \leq 1
\end{array}\right.
$$

Các hàm số $\mathrm{g}_{\mathrm{n}}(\mathrm{x})$ liên tụ̣c trên đoạn $[0,1]$, hội tụ trên đoạn đó tới một hàm số gián đoạn, vậy dãy hàm số $\mathrm{g}_{\mathrm{n}}(\mathrm{x})$ hợi tụ không đều trên đoạn $[0,1]$ tới hàm só $\mathrm{g}(\mathrm{x})$.
Dễ thấy rằng dãy $\left\{\mathrm{g}_{\mathrm{n}}\right\}$ hội tụ đều tới $\mathrm{g}(\mathrm{x})$ trên đoạn $[\mathrm{a}, 1]$ với $0<\mathrm{a}<1$.
b) Trên khoảng [$1,+\infty$), dāy $f_{n}(x)$ hội tụ tới 0 . Nhưng

$$
\sup _{x \geq 1}\left|f_{n}(x)-0\right|=\sup _{x \geq 1} \frac{x}{x+n}=1,
$$

nên $\mathrm{f}_{\mathrm{n}}(\mathrm{x})$ hợi tụ không đều trên khoảng [1, + $\boldsymbol{\infty}$) tới 0 .
Vói $x \geq 1, \lim _{n \rightarrow \infty} g_{n}(x)=1$, còn

$$
\sup _{x \geq 1}\left|g_{n}(x)-1\right|=\sup \frac{1}{1+n x}=\frac{1}{1+n} \rightarrow 0(n \rightarrow \infty)
$$

Vậy $\mathrm{g}_{\mathrm{n}}(\mathrm{x})$ hội tụ đều trên khoảng [1, $+\infty$) tới 1 .
2) Xét dãy hàm số $\left\{\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right\}$ với $\mathrm{f}_{\mathrm{n}}(\mathrm{x})=\frac{\mathrm{x}^{\mathrm{n}}}{1+\mathrm{x}^{\mathrm{n}}}, \mathrm{x} \in[0,2]$.
a) Trên doạn [0, a] với $0<a<1$, ta có $0 \leq f_{n}(x) \leq x^{n} \leq a^{n}$. Vi $\mathrm{a}^{\mathrm{n}} \rightarrow 0$ khi $\mathrm{n} \rightarrow \infty$, nên $\mathrm{f}_{\mathrm{n}}(\mathrm{x})$ hội tụ đều trên [0, a] tới 0 .

Nếu $x=1, f_{n}(x)=\frac{1}{2}, \forall n$, nên $\lim _{n \rightarrow \infty} f_{n}(1)=\frac{1}{2}=f(1)$.
Còn trên doạn $[\mathrm{b}, 2]$, với $1<\mathrm{b}<2$, ta có

$$
\left|f_{n}(x)-1\right|=\frac{1}{1+x^{n}} \leq \frac{1}{1+b^{n}} \rightarrow 0(\text { khi } n \rightarrow \infty) \text {, }
$$

nên $\mathrm{f}_{\mathrm{n}}(\mathrm{x})$ hội tụ đều trên doạn $[\mathrm{b}, 2]$ tới hàm $\mathrm{f}(\mathrm{x})=1$.
Như vậy tại những điểm của đọan $[0,2]$, dãy $f_{n}(x)$ hội tụ tới hàm số gián đoạn

$$
\mathrm{f}(\mathrm{x})= \begin{cases}0 & \text { nếu } \\ \frac{1}{2} & \text { nếu } \mathrm{x}=\mathrm{x}<1 \\ 1 & \text { nếu } \\ 1<\mathrm{x} \leq 2\end{cases}
$$

Các hàm số $\mathrm{f}_{\mathrm{n}}(\mathrm{x})$ đều liên tục trên đoạn $[0,2]$, vậy sự hội tụ của dāy $\left\{\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right\}$ tới $\mathrm{f}(\mathrm{x})$ là không đều trên $[0,2]$.
b) Đặ $I_{n}=\int_{0}^{2} f_{n}(x) d x-1$. Với a cố định, $0<a<1$, ta có

$$
\begin{align*}
I_{n} & =\int_{0}^{1-a} f_{n} d x+\int_{1-a}^{l+a} f_{n} d x+\int_{1+a}^{2}\left(f_{n}-1\right) d x-\int_{1}^{1+a} d x \\
\Rightarrow & \left|I_{n}\right| \leq\left|\int_{0}^{1-a} f_{n} d x\right|+\left|\int_{1-a}^{1+a} f_{n} d x\right|+\left|\int_{1+a}^{2}\left(f_{n}-1\right) d x\right|+\left|\int_{1}^{1+a} d x\right| \tag{*}
\end{align*}
$$

Vì $\mathrm{f}_{\mathrm{n}}(\mathrm{x})$ hội tụ đều tới 0 trên đoạn [$0,1-\mathrm{a}$, nên với số $\varepsilon>0$ cho trước, tồn tại số nguyên dương n_{0} sao cho với $n \geq n_{0}$ ta có

$$
\left|\int_{0}^{1-a} f_{n}(x) d x\right|<\frac{\varepsilon}{4}
$$

Cūng như vậy, tồn tại số nguyên dương n_{1} sao cho với $n \geq n_{1}$ ta có

$$
\left|\int_{1+a}^{2}\left[f_{n}(x)-1\right] d x\right|<\frac{\varepsilon}{4}
$$

Vì $\left|f_{n}(x)\right| \leq 1, \forall n$, nên trị tuyệt đối của hai số hạng còn lại của vế phải của (${ }^{*}$) không vượt quá $\frac{\varepsilon}{4}$. Vậy với $n \geq \max \left(n_{0}, n_{1}\right)$, ta có $\left|I_{n}\right|<\varepsilon$, do đó $\lim _{n \rightarrow \infty} I_{n}=0$.
Chú thích. Vı $\mathrm{f}_{\mathrm{n}}(\mathrm{x})$ hội tụ không đều trên [0, 2] tới $\mathrm{f}(\mathrm{x})$ nên không thé̉ suy ra

$$
\lim _{n \rightarrow \infty} \int_{0}^{2} f_{n}(x) d x=\int_{0}^{2} f(x) d x
$$

3) Giả sử $x_{o} \in R_{+-}$Với $n>x_{o}, f_{n}\left(x_{o}\right)=\left(1-\frac{x_{o}}{n}\right)^{n}=e^{n \ln \left(1-\frac{x_{0}}{n}\right)}$, $f_{n}\left(x_{0}\right) \rightarrow e^{-x_{0}}$ khi $n \rightarrow \infty$. Vậy $f_{n}(x)$ hội tụ tới $f(x)=e^{-x}$ tại mọi điểm $x_{o} \in \mathbf{R}_{+}$. Để khảo sát sự hội tụ đều của dãy $\mathrm{f}_{\mathrm{n}}(\mathrm{x})$, ta hãy đánh giá $\max _{\mathbf{R}_{+}}\left|f_{n}(x)-f(x)\right|$. Có định só nguyên $n>1$. Đạt

$$
g(x)=f(x)-f_{n}(x)=e^{-x}-\left(1-\frac{x}{n}\right)^{n}, x \in[0, n]
$$

Ta có

$$
g^{\prime}(x)=-e^{-x}+n\left(1-\frac{x}{n}\right)^{n-1}=e^{-x}\left[e^{\ln n\left(1-\frac{x}{n}\right)^{n-1}+x}-1\right]
$$

dấu của $g^{\prime}(x)$ là dấu của $h(x)=\ln n\left(1-\frac{x}{n}\right)^{n-1}+x$. Vĭ $h^{\prime}(x)=\frac{1-x}{n-x}$, nên $h(x)$ tăng trên $[0,1]$, giảm trên [1, n]. Nhưng $h(0)=$ lnn, $h(x) \rightarrow-\infty$ khi $x \rightarrow \mathrm{n}^{-}$, do đó tồn tại so $\alpha \in(1, \mathrm{n})$ sao cho

$$
h(x) \geq 0 \text { trên }[0, \alpha], h(x) \leq 0 \text { trên }[\alpha, n] .
$$

Vì $\mathrm{g}^{\prime}(\mathrm{x})$ có dấu của $\mathrm{h}(\mathrm{x})$ nên $\mathrm{g}(\mathrm{x})$ tãng trên $[0, \alpha]$ và giảm trên $[\alpha, \mathrm{n}]$. Nhưng $g(0)=0, g(n)=e^{-n} \geq 0$ nên

$$
\forall \mathrm{x} \in[0, \mathrm{n}], 0 \leq \mathrm{g}(\mathrm{x}) \leq \mathrm{g}(\alpha) \text { với } \mathrm{g}^{\prime}(\alpha)=0
$$

Vậy chỉ cần đánh giá $g(x)$. Vì $g^{\prime}(\alpha)=0$, nên $\left(1-\frac{\alpha}{n}\right)^{n-1}=e^{-\alpha}$, do đó

$$
\begin{equation*}
g(\alpha)=e^{-\alpha}-\left(1-\frac{\alpha}{n}\right)^{n-1}\left(1-\frac{\alpha}{n}\right)=\frac{\alpha}{n} e^{-\alpha} \tag{**}
\end{equation*}
$$

Hàm số $\mathrm{x} \mapsto \mathrm{xe}^{-\mathrm{x}}$ đạt cực đại tại $\mathrm{x}=1$, nên $\mathrm{xe}^{-\mathrm{x}} \leq \frac{1}{\mathrm{e}}$ trên \mathbf{R}_{+}. Vì vậy, từ (**) suy ra

$$
0 \leq \mathrm{g}(\mathrm{x}) \leq \mathrm{g}(\alpha) \leq \frac{1}{\mathrm{ne}} \quad \forall \mathrm{x} \in[0, \mathrm{n}]
$$

Hay

$$
\left|f(x)-f_{n}(x)\right| \leq \frac{1}{n e} \quad \forall x \in[0, n]
$$

Bất đẩng thức ấy cũng đúng $\forall \mathrm{x} \in[\mathrm{n},+\infty)$, do đó nó đúng $\forall x \in \mathbf{R}_{+}$. Vậy $\mathrm{f}_{\mathrm{n}}(\mathrm{x})$ hội tụ đều tới $\mathrm{e}^{-\mathrm{x}}$ trên \mathbf{R}_{+}.
6. 1) a) Trước hết ta chú ý rằng hàm số $f(x)=\frac{2 x+1}{x+2}$ xác định . $\forall \mathrm{x} \neq-2$, có đạo hàm $\mathrm{f}^{\prime}(\mathrm{x})=\frac{3}{(\mathrm{x}+2)^{2}}>0 \quad \forall \mathrm{x} \neq-2$. Do đó khi x tăng từ -1 đến +1 , thì $\mathrm{f}(\mathrm{x})$ tăng từ -1 đến +1 . Vậ y

$$
\left|\frac{2 \mathrm{x}+1}{\mathrm{x}+2}\right| \leq 1, \quad \forall \mathrm{x} \in[-1,1]
$$

Do đó ta có

$$
\left|\frac{1}{2^{n-1}}\left(\frac{2 x+1}{x+2}\right)^{n}\right| \leq \frac{1}{2^{n-1}}, \quad \forall x \in[-1,1]
$$

Vî chuổi số $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$ hội tụ, nên theo định lî Weierstrass chuỗi hàm số đã cho hội tụ đều trên đoạn $[-1,1]$.
b) Trước hết ta xét sự biến thiên của hàm số

$$
\mathrm{x} \mapsto \mathrm{u}_{\mathrm{n}}(\mathrm{x})=\sqrt{\mathrm{n}} \mathrm{xe}^{-n^{2} \mathrm{x}} \text { với } \mathrm{n} \text { cố định. Ta có }
$$

$$
u_{n}^{\prime}(x)=\sqrt{n} e^{-n^{2} x}\left(1-n^{2} x\right) .
$$

Vậy $u_{n}^{\prime}(x)=0$ khi $x=\frac{1}{n^{2}}$. Ta có bảng biến thiên

x	0		$\frac{1}{\mathrm{n}^{2}}$	
$\mathrm{u}_{\mathrm{n}}(\mathrm{x})$		+	0	-
$\mathrm{u}_{\mathrm{n}}(\mathrm{x})$	0		$+\infty$	

Do dó ta có

$$
\left|u_{n}(x)\right| \leq u_{n}\left(\frac{1}{n^{2}}\right)=\frac{1}{e^{\frac{3}{2}}}, \quad \forall x \in \mathbf{R}^{+} .
$$

Vì chuỗi số $\sum_{n=1}^{\infty} \frac{1}{e_{n}^{\frac{3}{2}}}$ hội tụ, nên chuỗi hàm số đã cho hội tụ đèu trên \mathbf{R}^{+}.
c) Nếu $x \leq 0, u_{n}(x)=(-1)^{n} n^{-x}$ không dần tới 0 khi $n \rightarrow \infty$, chuōi hàm số phân kì.
Nếu $x>1$, ta có

$$
\left|u_{n}(x)\right|=\frac{1}{n^{x}}
$$

Chuổi hàm sớ hội tụ tuyệt đối.

Nếu $0<x \leq 1$, chuổi hàm số là một chuỗi đan đấu thoả mãn các điều kiện của định lí Leibniz, nó hội tụ, nhưng khơng hội tụ tuyệt đối.

Gọi $\mathrm{R}_{\mathrm{n}}(\mathrm{x})$ là phần dư thứ n của chuỗi hàm số dang xét với $\mathrm{x}>0$. Vì đó là một chuôi đan dấu nên ta có

$$
\left|R_{n}(x)\right| \leq\left|u_{n+1}(x)\right|=\frac{1}{(n+1)^{x}}
$$

Nếu $\mathrm{x} \geq \mathrm{a}>0$ với a cố định, ta có

$$
\left|R_{n}(x)\right| \leq \frac{1}{(n+1)^{a}}
$$

Với mọi số $\varepsilon>0$ cho trước, ta chọn n sao cho

$$
\frac{1}{(n+1)^{\mathrm{a}}}<\varepsilon \Leftrightarrow n+1>\left(\frac{1}{\varepsilon}\right)^{\frac{1}{\mathrm{a}}}
$$

Do đó với mọi $n \geq n_{o}=\left(\frac{1}{\varepsilon}\right)^{\frac{1}{a}}-1$, ta có

$$
\left|\mathrm{R}_{\mathrm{n}}(\mathrm{x})\right|<\varepsilon, \forall \mathrm{x} \geq \mathrm{a}
$$

Vậy chuỗi hàm số đā cho hội tụ đều trèn khoảng $[\mathrm{a},+\infty$) với $\mathrm{a}>0$ cố dịnh.
2) Chuổi hàm số với số hạng tổng quát

$$
u_{n}(x)=(-1)^{n} \frac{x^{2}+n}{n^{2}}
$$

với mọi $x \in R$ là một chuỗi đan dá̛u, thoả mān các điều kiện của dịnh lí Leibniz, nên nó hội tụ trên R. Gọi $R_{n}(x)$ là tổng riêng thứ n của nó, ta có

$$
\left|R_{n}(x)\right| \leq\left|u_{n+1}(x)\right|=\frac{x^{2}+(n+1)}{(n+1)^{2}}
$$

Đặt $M=\max (|a|,|b|)$. Ta có

$$
\left|R_{n}(x)\right| \leq \frac{M^{2}+(n+1)}{(n+1)^{2}}, \forall x \in[a, b]
$$

Vế phải dần tới không khi $n \rightarrow \infty$, với mọi $x \in[a, b]$, vậy chuỗi hàm số đã cho hội tụ đều trên đọ̣n [a, b].
Vậy chuỗi hàm số đã cho hội tụ dều trện [a, b].
vì $\left|u_{n}(x)\right|=\frac{x^{2}+n}{n^{2}}-\frac{1}{n}$ khi $n \rightarrow \infty$, nên chuỡi $\sum_{n=1}^{\infty}\left|u_{n}(x)\right|$ phân kì.
Do đó chuổi hàm số đã cho không hội tụ tuyệt đới.
7. Nếu $x \in[a,+\infty)$, trong đó $a>0$, ta có

$$
n e^{-n x} \leq n e^{-n a}
$$

Chuỗi số $\sum_{n=1}^{\infty} n e^{-n a}$ là chuỗi só dương hội tụ vì theo quy tắc D'Alembert

$$
\frac{(n+1) e^{-(n+1) a}}{n e^{-n a}}=\frac{n+1}{n} e^{-a} \rightarrow e^{-a}<1
$$

khi $n \rightarrow \infty$. Do đó chuỗi hàm sơ $\sum_{n=1}^{\infty} n e^{-n x}$ hội tụ đều trên khoảng $[a,+\infty)$. Chuỗi ấy không hội tụ đều trên $[0,+\infty)$ vì tại $x=0$, chuô̂i ấy trở thành $\sum_{n=1}^{\infty} n$, nớ phân kì.

Nếu $x>0$, chuổi hàm sớ $\sum_{n=1}^{\infty} u_{n}(x)$, trong đó $u_{n}(x)=e^{-n x}$ là một cấp số nhân lùi vô hạn, có sớ hạng đầu là $\mathrm{e}^{-\mathrm{x}}$ và công bội là $\mathrm{e}^{-\mathrm{x}}$, 27.0.0.1 dow04oaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
do đó nó hội tụ và có tổng là $\frac{\mathrm{e}^{-x}}{1-\mathrm{e}^{-x}}$. Chuỗi hàm số
$\sum_{n=1}^{\infty} u_{n}^{\prime}(x)=-\sum_{n=1}^{\infty} n e^{-n x}$ hội tụ đều trền [a,+o) với mọi a >0 như ta đã thấy ở trên. Vậy với $x>0$ ta có thể lấy dạo hàm từng só hạng chuối hàm só $\sum_{n=1}^{\infty} u_{n}(x)$. Ta được
$\sum_{n=1}^{\infty} n e^{-n x}=-\sum_{n=1}^{\infty} \dot{u}_{n}^{\prime}(x)=-\left(\sum_{n=1}^{\infty} u_{n}(x)\right)^{\prime}=-\left(\frac{e^{-x}}{1-e^{-x}}\right)^{\prime}=\frac{e^{x}}{\left(e^{x}-1\right)^{2}}$
8. 1) Với $x \in(0,1]$, ta có $u_{n}(x)<0$; vậy chuỗi hàm số dã cho là một chuỗi đan dấu, thoả mãn các điều kiện của định lí Leibniz, nó hội tụ. Tại $x=0, u_{n}(0)=0$, chuổi cūng hội tụ. Gọi $R_{n}(x)$ là phần dự thứ n của chuỗi với $x \in(0,1]$, ta có

$$
\left|R_{n-l}(x)\right| \leq\left|u_{n}(x)\right|=\left|x^{n+1} \ln x\right|
$$

Xét hàm só $x \mapsto u_{n}(x)=x^{n+1} \ln x$ với n có́ định. Ta có

$$
\begin{aligned}
& u_{n}^{\prime}(x)=x^{n}[1+(n+1) \cdot \ln x] \\
& u_{n}^{\prime}(x)=0 \text { khi } x_{0}=e^{-\frac{1}{n+1}}
\end{aligned}
$$

Ta có bảng biến thiên

x	0		x_{0}	1
$\mathbf{u}_{\mathrm{n}}(\mathrm{x})$		-	0	+
$\mathbf{u}_{\mathrm{n}}(\mathrm{x})$	0			

Do đó ta có

$$
\left|R_{n-1}(x)\right| \leq\left|u_{n}(x)\right| \leq\left|u_{n}\left(e^{-\frac{1}{n+1}}\right)\right|=\frac{1}{e(n+1)}, \forall x \in[0,1]
$$

27.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

Với $\varepsilon>0$ cho trước, ta chọn n sao cho

$$
\frac{1}{e(n+1)}<\varepsilon \Leftrightarrow n>n_{0}=\frac{1}{e \varepsilon}-1
$$

Do đó với $\mathrm{n}>\mathrm{n}_{\mathrm{o}}$, ta có

$$
\left|R_{n-1}(x)\right|<\varepsilon, \forall x \in[0,1]
$$

Tóm lạ̣i chuổi $\sum_{n=1}^{\infty}(-1)^{n} u_{n}(x)$ hội tụ đều trên $[0,1]$.
2) Với $0<x<1$, chuô̄ $\sum_{n=0}^{\infty} x^{n+1} \ln x$ là một cấp sớ nhân vô hạn có só hạng đẩu là xlnx, công bội là x, nên

$$
\sum_{n=1}^{\infty} u_{n}(x)= \begin{cases}0 & \text { nêu } x=0 \\ \frac{x}{1-x} \ln x & \text { nếu } 0<x<1 \\ 0 & \text { nệ́u } x=1\end{cases}
$$

Nhiung $\lim _{x \rightarrow 1^{-}} \frac{x \ln x}{1-x}=-1$.
Vậy tổng của chuỗi hàm số đã cho là một hàm số không liên tục trên $[0,1]$, do đó chuỗi hàm số áy không thể hội tụ đều trên $[0,1]$. 9. Ta có

$$
\left|\frac{1}{n(n+\dot{x})}\right| \leq \frac{1}{n^{2}}, \quad \forall x \in \mathbf{R}^{+}
$$

Chuỡi sớ $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ hội tụ, do đó $\sum_{n=1}^{\infty} \frac{1}{n(n+x)}$ hợi tụ đều trên \mathbf{R}^{+}.
Các số hạng $\frac{1}{n(n+x)}$ của nó cûng liên tục trên \mathbf{R}^{+}, do đó hàm só
$f(x)$ xác định và liĉn tưc trên \mathbf{R}^{+}.
27.0.0.1 downloaded 60384.pdf at Tंue Jul 31 08:30:34 ICT 2012 206

Đặt $u_{n}(x)=\frac{1}{n(n+x)}$. Ta có $u_{n}^{\prime}(x)=-\frac{1}{n(n+x)^{2}}$. Vì $\left|u_{n}^{\prime}(x)\right| \leq \frac{1}{n^{3}}$,
$\forall x \in \mathbf{R}^{+}$, nên chuỗi hàm só $\sum_{n=1}^{\infty} u_{n}^{\prime}(x)$ họ̣i tụ đều trên \mathbf{R}^{+}, do đó hàm
só $f(x)$ khả vi trên R^{+}và ta có $f^{\prime}(x)=-\sum_{n=1}^{\infty} \frac{1}{n(n+x)^{2}}$.
10. Đặt $u_{n}(x)=\frac{1}{1+x^{n}}$. Nếu $|x| \leq 1$, $u_{n}(x)$ không dần tới 0 khi $n \rightarrow \infty$, vậy chuỗi hàm số $\sum_{n=1}^{\infty} u_{n}(x)$ phân kì. Nếu $|x|>1$ ta có $\left|u_{n}(x)\right| \sim \frac{1}{|x|^{n}}$ khi $n \rightarrow \infty$, do đó chuỗi hàm số $\sum_{n=1}^{\infty} u_{n}(x)$ hội tụ. Vậy miền hội tụ của nó là

$$
\{x \in \mathbf{R}:|x|>1\} .
$$

Ta sẽ chứng minh rằng chuỗi hàm số đã cho hợi tụ đều trên mọi đoạn $[\mathrm{a}, \mathrm{b}]$ nằm trong miền hội tụ của nó. Thạ̣t vậy, ta xét trường hợp $1<\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$. Ta có

$$
1+x^{n} \sim x^{n} \text { khi } n \rightarrow \infty
$$

Vậy khi n đủ lớn

$$
\frac{\left|1+x^{n}\right|}{|x|^{n}}>\frac{1}{2}
$$

Do đó

$$
\left|1+x^{n}\right|>\frac{|x|^{n}}{2}>\frac{a^{n}}{2}
$$

Suy ra

$$
\left|u_{n}(x)\right|=\frac{1}{\left|1+x^{n}\right|}<\frac{2}{a^{n}} ; \forall x \in[a, b] .
$$

Do $\frac{1}{a}<1$, chuỡi sơ $\sum_{n=1}^{\infty} \frac{2}{a^{n}}$ hội tụ, nên chuỗi hàm s ó $\sum_{n=1}^{\infty} u_{n}(x)$ hợi tụ đều trong doan [a, b]. Ta cũng chứng minh tương tư trừ̉ng hop
1 downloaded 60384.pdf at Tue Jut 31 08:30:34 |C个 2012
$\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}<-1$. Như vậy tổng của chuỗi hàm số đã cho là liên tục với $|x|>1$.
Bây giờ ta xét chuổi hàm số có số hạng tống quát là

$$
u_{n}^{\prime}(x)=-\frac{n x^{n-1}}{\left(1+x^{n}\right)^{2}}
$$

Chuōi ấy cưng hội tụ với $|x|>1$, vì

$$
\left|u_{n}^{\prime}(x)\right| \sim \frac{n}{|x|^{n+1}} \text { khi } n \rightarrow \infty
$$

Sự hội tụ đều của nó được chứng minh như đối với chuōi hàm số
$\sum_{\mathrm{n}=1}^{\infty} \mathrm{u}_{\mathrm{n}}(\mathrm{x})$. Xét trường hợp $\mathrm{l}<\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$. Với n đủ lớn

$$
\left|u_{n}^{\prime}(x)\right|<\frac{4 n b^{n-1}}{a^{2 n}}, \forall x \in[a, b]
$$

Đặt $v_{n}=\frac{4 n b^{n-1}}{a^{2 n}}$. Ta có

$$
\frac{v_{n+1}}{v_{n}}=\frac{n+1}{n} \cdot \frac{b}{a^{2}} \rightarrow \frac{b}{a^{2}} \text { khi } n \rightarrow \infty .
$$

Vậy chuởi số $\sum_{n=1}^{\infty} v_{n}$ hội tụ̣ nếu $\frac{b}{a^{2}}<1$, tức là

$$
\begin{equation*}
\mathrm{b}<\mathrm{a}^{2} \tag{}
\end{equation*}
$$

Do đó chuôi hàm số $\sum_{n=1}^{\infty} \mathrm{u}_{\mathrm{n}}(\mathrm{x})$ hội tụ đều trên mọi đoạn $[\mathrm{a}, \mathrm{b}] \subset[1,+\infty)$ thoả mãn điều kiện (*), điều này luôn thực hiện được vì $a>1$. Trong trường hợp $\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}<-1$, cững chứng minh tương tự. Tóm lại tổng của chuởi hàm số dă cho khả vi với $|x|>1$. Có thể chứng minh được rằng tổng của chuōi hàm sớ á́y khả vi vô hạn lần với $|x|>1$.
27.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
11. 1) $\mathrm{u}_{\mathrm{n}}(\mathrm{x})=\mathrm{a}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}}$, trong đó $\mathrm{a}_{\mathrm{n}}=(-1)^{\mathrm{n}+1} \frac{1}{\mathrm{n}}$. Ta có

$$
\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{n}{n+1}=1
$$

Do đó bán kính hội tụ của chuōi luỹ thừa là $R=1$. Tại $x=-1$, ta có chuối số $-\sum_{n=1}^{\infty} \frac{1}{n}$, nó phân kì. Tại $x=1$, ta có chuỗi số $\sum_{n=1}^{\infty}(-1)^{\mathrm{n}+1} \frac{1}{\mathrm{n}}$, đó là chuōi số đan đấu thoả mãn các điều kiện của định lí Leibniz, nó hội tụ. Vậy miền hội tụ của chuỗi luỹ thừa là $-1<x \leq 1$.
2) $u_{n}(x)=a_{n}(x-4)^{n}$, trong đó $a_{n}=\frac{1}{\sqrt{n}}$. Vì $\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=1$, nên $R=1$. Chuổi luỹ thừa hội tụ với $-1<x-4<1$, tức là $3<x<5$.
Tại $x=3$, ta có chuổi số đan dắu $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$, nó hội tụ. Tại $x=5$, ta có chuỗi số $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$, nó phân kì. Vậy miền hội tụ của chuổi luỹ thừa là $3 \leq x<5$.
3) $\mathrm{u}_{\mathrm{n}}(\mathrm{x})=\mathrm{a}_{\mathrm{n}} \mathrm{X}^{\mathrm{n}}$, trong đó $\mathrm{a}_{\mathrm{n}}=\left(\frac{\mathrm{n}+1}{2 \mathrm{n}+1}\right)^{\mathrm{n}}, \mathrm{X}=(\mathrm{x}-2)^{2}$. Ta có

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{n+1}{2 n+1}=\frac{1}{2}
$$

Do đó $\mathrm{R}=2$. Chuôi luȳ thừa hội tụ với $|\mathrm{X}|<2$, tức là $(\mathrm{x}-2)^{2}<2$, hay $2-\sqrt{2}<\mathrm{X}<2+\sqrt{2}$. Khi $\mathrm{x}=2 \pm \sqrt{2}$, ta có chuồi số

$$
\sum_{n=1}^{\infty}\left(\frac{2 n+2}{2 n+1}\right)^{n}
$$

Só hạng tổng quát của nó có thể viết là

$$
\left(1+\frac{1}{2 n+1}\right)^{n}=e^{n \ln \left(1+\frac{1}{2 n+1}\right)}
$$

khi $n \rightarrow \infty, n \ln \left(1+\frac{1}{2 n+1}\right) \sim \frac{n}{2 n+1} \rightarrow \frac{1}{2}$. Do đó

$$
\lim _{n \rightarrow \infty}\left(\frac{2 n+2}{2 n+1}\right)^{n}=e^{\frac{1}{2}} \neq 0
$$

Vậy chuôi sớ ấy phân kì. Miền hội tụ của chuỗi luỹ tḥ̛̛a là $2-\sqrt{2}<\mathrm{x}<2+\sqrt{2}$.
4) $u_{n}(x)=a_{n} x^{n}$, trong đó $a_{n}=n^{n}$. Ta có

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} n=\infty
$$

Do đ̣ó $\mathrm{R}=0$.
5) $u_{n}(x)=a_{n} x^{n}$, trong đó $a_{n}=\ln n$. Ta có

$$
\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{\ln n+\ln \left(1+\frac{1}{n}\right)}{\ln n}=1
$$

Do đó $\mathrm{R}=1$. Tại $\mathrm{x}=-1$ và $\mathrm{x}=1$, ta có theo thứ tự các chuỗi số $\sum_{n=2}^{\infty}(-1)^{n} \ln n, \sum_{n=2}^{\infty} \ln n$, chúng phân kì vì sơ hạng tởng quát của chúng khơng dần tới $0 \mathrm{khi} \mathrm{n} \rightarrow \infty$. Vậy miền hội tụ của chuỗi luỹ thừa là $-1<x<1$.
6) $u_{n}(x)=a_{n} x^{n}$, trong đo $a_{n}=\frac{5^{n}}{n!}$. Ta co

$$
\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{5}{n+1}=0
$$

Do đó $\mathrm{R}=\infty$. Miền hội tụ của chuỗi luỹ thừa là $-\infty<x<+\infty$.
7) $u_{n}(x)=a_{n} x^{n}$, trong đó $a_{n}=\frac{1}{n^{\alpha}}, \alpha>0$. Ta có

$$
\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{n^{\alpha}}{(n+1)^{\alpha}}=1
$$

Do đó $\mathrm{R}=1$. Tại $\mathrm{x}=-1$, ta có chuôi số đan dấu $\sum_{\mathrm{n}=1}^{\infty}(-1)^{\mathrm{n}} \frac{1}{\mathrm{n}^{\alpha}}$, nó hội tụ theo định lí Leibniz. Tại $x=1$ ta có chuōi só dương $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$, nố hội tụ nếu $\alpha>1$, phẩn kì nếu $\alpha \leq 1$. Vậy nếu $\alpha \leq 1$, miền hội tụ của chuỗi luỹ thừa là $-1 \leq x<1$, còn nếu $\alpha>1$, miền hội tụ của nó là $-1 \leq x \leq 1$.
8) $u_{n}(x)=a_{n} x^{n}$, trong đó $a_{n}=(-1)^{n-1} \frac{1}{n!}$. Ta có

$$
\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{1}{n+1}=0
$$

Do đó $\mathrm{R}=\infty$. Miền hội tụ của chuỗi luỹ thừa là $-\infty<\mathrm{x}<+\infty$.
9) Vì $0<\mathrm{a}_{\mathrm{o}}<\frac{\pi}{2}$, nên $0<\mathrm{a}_{1}=\sin \mathrm{a}_{\mathrm{o}}<\mathrm{a}_{\mathrm{o}}$. Bằng quy nạp, có thể chứng minh được rằng $\mathrm{a}_{\mathrm{n}}<\mathrm{a}_{\mathrm{n}-1}$, $\forall \mathrm{n}$. Do đó đãy số $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ đơn điệu giảm, nó lại bị chặn dưới bởi 0 , nên dãy số ấy dần tới một giới hạn $l \mathrm{khi} \mathrm{n} \rightarrow \infty$. Từ hệ thức

$$
a_{n}=\sin a_{n-1}
$$

suy ra rằng $l=\sin l$,
do đó $l=0$, vì $0 \leq l<\frac{\pi}{2}$. Vậy $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ là một dãy só giảm đấn và dần tới 0 khi n tảng dẩn đến ∞. Ta có

$$
\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{\sin a_{n}}{a_{n}}=1
$$

Do đó $R=1$. Tại $x=-1$, ta có chuổi só́ đan dấu $\sum_{n=0}^{\infty}(-1)^{n} a_{n}$ họ̣i tụ theo định lí Leibniz. Tại $x=1$, ta có chuỗi số dương $\sum_{n=1}^{\infty} a_{n}$. Ta có $a_{n}>a_{n}^{2}, \forall n$. Ta sẽ chứng minh rà̀ng chuôi số $\sum_{n=1}^{\infty} a_{n}^{2}$ phàn kì, do đó chuỗi số $\sum_{\mathrm{n}=1}^{\infty} \mathrm{a}_{\mathrm{n}}$ phàn kì. Thạ̀t vậy, từ công thức khai triển hữu hạn của hàm $\sin x$, suy ra

$$
\frac{\sin x}{x}=1-\frac{x^{2}}{6}+o\left(x^{2}\right) \text { khi } x \rightarrow 0
$$

Khi $n \rightarrow \infty, a_{n} \rightarrow 0$, do đó khi $n \rightarrow \infty$,

$$
\ln \frac{\sin a_{n}}{a_{n}} \sim \ln \left(1-\frac{a_{n}^{2}}{6}\right) \sim-\frac{a_{n}^{2}}{6} .
$$

Vì vậy để khảo sát sự hội tụ của chuổi sớ $\sum_{n=1}^{\infty} \mathrm{a}_{\mathrm{n}}^{2}$, ta xét sự hội tụ của chuôi só $\sum_{n=1}^{\infty} \ln \frac{\sin a_{n}}{a_{n}}$. Ta có

$$
\begin{gathered}
\sum_{k=1}^{n} \ln \frac{\sin a_{k}}{a_{k}}=\ln \left(\frac{a_{1}}{a_{o}} \cdot \frac{a_{2}}{a_{1}} \cdots \frac{a_{n+1}}{a_{n}}\right)=\ln \frac{a_{n+1}}{a_{o}}, \\
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \ln \frac{\sin a_{k}}{a_{k}}=\lim _{n \rightarrow \infty} \ln \frac{a_{n+1}}{a_{0}}=-\infty .
\end{gathered}
$$

Do đó chuổi sớ $\sum_{n=1}^{\infty} \ln \frac{\sin a_{n}}{a_{n}}$ phân kì, nên chuōi số $\sum_{n=1}^{\infty} a_{n}^{2}$ phân kì, 'suy ra chuối số $\sum_{n=1}^{\infty} a_{n}$ phân kì. Vậy miền hội tụ của chuồi luỹ thừa là $-1 \leq x<1$.
12. 1) $(3 n+1) x^{3 n}$ là đạo hàm của $x^{3 n+1}$. Chuỗi có số hạng tổng quát là $x^{3 n+1}$ là một cấp số nhân công bợi x^{3}, do đó nó hội tụ với $\left|x^{3}\right|<1$, tức là $|x|<1$. Vậy miền hội tụ của chuôi luȳ thừa đang xét cūng là $|x|<1$. Ta có

$$
\sum_{n=1}^{\infty} x^{3 n+1}=x^{4} \cdot \sum_{n=0}^{\infty} x^{3 n}=\frac{x^{4}}{1-x^{3}}
$$

Do dó với $|x|<1$, ta có

$$
\sum_{n=1}^{\infty}(3 n+1) x^{3 n}=\left(\frac{x^{4}}{1-x^{3}}\right)^{\prime}=\frac{4 x^{3}-x^{6}}{\left(1-x^{3}\right)^{2}}
$$

2) $\left(2^{n}+3^{n}\right) x^{n}=(2 x)^{n}+(3 x)^{n}$. Chuổi $\sum_{n=0}^{\infty}(2 x)^{n}$ là một cấp số nhân có công bội $2 x$, nớ hội tụ nếu $|2 x|<1$, tức là $|x|<\frac{1}{2}$ và có tông là $\frac{1}{1-2 x}$. Chuôi $\sum_{n=0}^{\infty}(3 x)^{n}$ là một cấp số nhân có công bội $3 x$, nó hội tụ nếu $|3 x|<1$, tức là $|x|<\frac{1}{3}$ và có tởng là $\frac{1}{1-3 x}$. Vậy miền hội tụ của chuổi luỹ thừa đā cho là $|x|<\frac{1}{3}$. Tóng của nó là $\frac{1}{1-2 x}+\frac{1}{1-3 x}$.
3) $u_{n}(x)=\left(n-\frac{1}{n+3}\right) \frac{x^{n}}{n!}=v_{n}(x)-w_{n}(x)$, trong dó

$$
\dot{v_{n}}(x)=\frac{n x^{n}}{n!}, w_{n}(x)=\frac{1}{n+3} \cdot \frac{x^{n}}{n!}
$$

Chuôi $\sum_{n=0}^{\infty} v_{n}(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{(n-1)!}=x \sum_{n=1}^{\infty} \frac{x^{n-1}}{(n-1)!}$ hội tụ $\forall x \in R$ và có tổng là xe^{x}.
Ta có

$$
w_{n}(x)=\frac{1}{x^{3}} \cdot \frac{x^{n+3}}{n+3} \cdot \frac{1}{n!}=\frac{1}{x^{3}} \int_{0}^{x} \frac{t^{n+2}}{n!} d t=\frac{1}{x^{3}} \int_{0}^{x} t^{2} \cdot \frac{t^{n}}{n!} d t .
$$

Do đó

$$
\sum_{n=0}^{\infty} w_{n}(x)=\frac{1}{x^{3}} \sum_{n=0}^{\infty} \int_{0}^{x} t^{2} \cdot \frac{t^{n}}{n!} d t
$$

Vî chuỗi luỹ thừa $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ hội tụ $\forall x \in R$ và có tổng là e^{x} nên ta dược

$$
\sum_{n=0}^{\infty} w_{n}(x)=\frac{1}{x^{3}} \int_{0}^{x} t^{2} \cdot \sum_{n=0}^{\infty} \frac{t^{n}}{n!} d t=\frac{1}{x^{3}} \int_{0}^{x} t^{2} e^{t} d t, \forall x \neq 0
$$

Bằng phương pháp tích phân từng phần ta được

$$
\sum_{n=0}^{\infty} w_{n}(x)=\frac{1}{x^{3}}\left[e^{x}\left(x^{2}-2 x+2\right)-2\right]
$$

Tóm lại chuối luỹ thừa đã cho họi tụ $\forall x \neq 0$ và có tống là

$$
x e^{x}-\frac{1}{x^{3}}\left[e^{x}\left(x^{2}-2 x+2\right)-2\right]
$$

4) $u_{n}(x)=a_{n} x^{n}$, trong đó $a_{n}=$ chna. Ta có

$$
\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{e^{(n+1) a}+e^{-(n+1) a}}{e^{n a}+e^{-n a}}=e^{a}
$$

Do đó $\mathrm{R}=\mathrm{e}^{-\mathrm{a}}$. Vói $\mathrm{x}= \pm \mathrm{e}^{-\mathrm{a}}$, ta có

$$
\left|u_{n}\left(\pm e^{-a}\right)\right|=e^{-n a} \operatorname{ch} n a=e^{-n a}\left[\frac{e^{n a}+e^{-n a}}{2}\right] \rightarrow \frac{1}{2} \neq 0
$$

khi $n \rightarrow \infty$. Chuổi phân kì. Vậy miền hội tụ của chuổi luỹ thừa đã cho là ($-\mathrm{e}^{-\mathrm{a}}, \mathrm{e}^{-\mathrm{a}}$).

Ta có

$$
u_{n}(x)=\frac{1}{2}\left(e^{n a}+e^{-n a}\right) x^{n}=\frac{1}{2}\left[\left(e^{a} x\right)^{n}+\left(e^{-a} x\right)^{n}\right]
$$

Với $|x|<e^{-a}$, ta có $\left|e^{a} x\right|<1,\left|e^{-a} x\right|<1$. Chuōi luỹ thừa đã cho là tổng của hai cấp số nhân vô hạn có công bội $\mathrm{e}^{\mathrm{a}} \mathrm{x}$ và $\mathrm{e}^{-\mathrm{a}} \mathrm{x}$, chúng hội tụ và có tổng là $\frac{1}{2} \frac{1}{1-\mathrm{xe}^{\mathrm{a}}}$ và $\frac{1}{2} \frac{1}{1-\mathrm{xe}^{-\mathrm{a}}}$.
Vậy tổng của chuổi luỹ thừa đă cho là

$$
\begin{aligned}
\frac{1}{2}\left[\frac{1}{1-x e^{a}}+\frac{1}{1-x e^{-a}}\right] & =\frac{1}{2} \frac{2-x\left(e^{a}+e^{-a}\right)}{\left(1-x^{a}\right)\left(1-x e^{-a}\right)} \\
& =\frac{1-x \operatorname{cha}}{1+x^{2}-2 x \operatorname{ch} a}
\end{aligned}
$$

5) $u_{n}(x)=a_{n} x^{n-1}$, trong đó $a_{n}=(-1)^{n-1} \cdot \frac{1}{n}$. Dễ dàng thấy rằng $R=1$. Tại $x=-1$ ta có chuối só $\sum_{n=1}^{\infty} \frac{1}{n}$, nó phân kì. Tại $x=+1$, ta có chuỗ số đan dấu $\sum_{n=1}^{\infty}(-1)^{\mathrm{n}-1} \frac{1}{\mathrm{n}}$, nó hội tụ theo định lí Leibniz.
Vậy miền hội tụ̣ của chuõ̃i luy thừa đã cho là $-1<\mathrm{x} \leq 1$.
Gọi $f(x)$ là tổng của chuổi luỹ thừa với $|x|<1$. Ta có

$$
f(x)=1-\frac{x}{2}+\frac{x^{2}}{3}-\frac{x^{3}}{4}+\cdots+(-1)^{n-1} \frac{x^{n-1}}{n}+\cdots
$$

Do dó

$$
\begin{aligned}
x f(x) & =x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots+(-1)^{n-1} \frac{x^{n}}{n}+\cdots \\
& =\ln (1+x)
\end{aligned}
$$

Vậy

$$
f(x)=\frac{\ln (1+x)}{x}
$$

13. Ta có

$$
\begin{gathered}
x=3+(x-3)=3\left(1+\frac{x-3}{3}\right) \\
\frac{1}{x}=3^{-1}\left(1+\frac{x-3}{3}\right)^{-1}
\end{gathered}
$$

Áp dụng công thức khai triển hàm sớ $(1+X)^{\alpha}$ thành chuỗi luȳ thừa ở lăn cận $X=0$, ta được ở lân cận $X=3$

$$
f(x)=\frac{1}{x}=\frac{1}{3}\left[1-\frac{x-3}{3}+\left(\frac{x-3}{3}\right)^{2}-\left(\frac{x-3}{3}\right)^{3}+\cdots+(-1)^{n}\left(\frac{x-3}{3}\right)^{n}+\cdots\right]
$$

14. 15) $f(x)=\operatorname{ch} x=\frac{1}{2}\left(e^{x}+e^{-x}\right)=$

$$
\begin{aligned}
& =\frac{1}{2}\left(1+\frac{x}{1!}+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+\cdots\right)+\frac{1}{2}\left(1-\frac{x}{1!}+\frac{x^{2}}{2!}-\cdots+(-1)^{n} \frac{x^{n}}{n!}+\cdots\right)= \\
& =1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots+\frac{x^{2 n}}{(2 n)!}+\cdots, R=\infty
\end{aligned}
$$

$$
\text { 2) } f(x)=x^{2} e^{x}=x^{2}\left(1+\frac{x}{1!}+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+\cdots\right)=
$$

$$
=x^{2}+\frac{x^{3}}{1!}+\frac{x^{4}}{2!}+\cdots+\frac{x^{n+2}}{n!}+\cdots, R=\infty
$$

3) $f(x)=\sin ^{2} x=\frac{1-\cos 2 x}{2}=$

$$
\begin{aligned}
& =\frac{1}{2}\left[1-\left(1-\frac{(2 x)^{2}}{2!}+\frac{(2 x)^{4}}{4!}-\cdots+(-1)^{n} \frac{(2 x)^{2 n}}{2 n!}+\cdots\right)\right]= \\
& =\frac{2 x^{2}}{2!}-\frac{2^{3} x^{4}}{4!}+\cdots+(-1)^{n-1} \frac{2^{n-1} x^{2 n}}{(2 n)!}+\cdots, R=\infty .
\end{aligned}
$$

4) $f(x)=\frac{1}{x^{2}-3 x+2}=\frac{1}{(x-1)(x-2)}=\frac{1}{x-2}-\frac{1}{x-1}=$

$$
=\frac{1}{1-x}-\frac{1}{2-x} .
$$

Nhung

$$
\begin{gathered}
\frac{1}{1-x}=1+x+x^{2}+\ldots+x^{n}+\ldots \text { với }|x|<1 \\
\frac{1}{2-x}=\frac{1}{2} \cdot \frac{1}{1-\frac{x}{2}}=\frac{1}{2}\left[1+\frac{x}{2}+\left(\frac{x}{2}\right)^{2}+\cdots+\left(\frac{x}{2}\right)^{n}+\cdots\right]
\end{gathered}
$$

với $|x|<2$.
Do đó

$$
f(x)=\frac{1}{2}+\left(1-\frac{1}{2^{2}}\right) x+\left(1-\frac{1}{2^{3}}\right) x^{2}+\ldots+\left(1-\frac{1}{2^{n+1}}\right) x^{n}+\ldots
$$

$\mathrm{R}=1$.
5) Ta có

$$
x^{2}-5 x+6=6\left(1-\frac{x}{2}\right)\left(1-\frac{x}{3}\right)
$$

Do đó

$$
f(x)=\ln \left(x^{2}-5 x+6\right)=\ln 6+\ln \left(1-\frac{x}{2}\right)+\ln \left(1-\frac{x}{3}\right)
$$

Nhưng

$$
\begin{aligned}
& \ln \left(1-\frac{x}{2}\right)=-\frac{x}{2}-\frac{1}{2}\left(\frac{x}{2}\right)^{2}-\cdots-\frac{1}{n}\left(\frac{x}{2}\right)^{n}+\cdots,|x|<2 \\
& \ln \left(1-\frac{x}{3}\right)=-\frac{x}{3}-\frac{1}{2}\left(\frac{x}{3}\right)^{2}-\cdots-\frac{1}{n}\left(\frac{x}{3}\right)^{n}+\cdots,|x|<3 .
\end{aligned}
$$

27.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

Vậy

$$
f(x)=\ln 6-\sum_{n=1}^{\infty} \frac{1}{n}\left(\frac{1}{2^{n}}+\frac{1}{3^{n}}\right) x^{n},|x|<2
$$

6) $f^{\prime}(x)=\cos x^{2}=1-\frac{x^{4}}{2!}+\frac{x^{8}}{4!}-\cdots+(-1)^{n} \frac{x^{4 n}}{(2 n)!}+\cdots, R=\infty$.

Do đó

$$
f(x)=x-\frac{x^{5}}{2!5}+\frac{x^{9}}{4!9}-\cdots+(-1)^{n} \frac{x^{4 n+1}}{(2 n)!(4 n+1)}+\cdots, R=\infty .
$$

7) Ta có với $|x|<1$

$$
\begin{gathered}
\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots+(-1)^{n-1} \frac{x^{n}}{n}+\cdots \\
\ln (1-x)=-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\cdots-\frac{x^{n}}{n}-\cdots \\
\ln \frac{1+x}{1-x}=\ln (1+x)-\ln (1-x)=2\left(x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\cdots+\frac{x^{2 n+1}}{2 n+1}+\cdots\right) .
\end{gathered}
$$

Do đó với $|x|<1, x \neq 0$ ta có

$$
f(x)=\frac{1}{x} \ln \frac{1+x}{1-x}=2\left(1+\frac{x^{2}}{3}+\frac{x^{4}}{5}+\cdots+\frac{x^{2 n}}{2 n+1}+\cdots\right)
$$

Cả hai vế đều liên tục tại $x=0$, đều có giá trị bằng 2 tại $x=0$. Do đó khai triển trên cũng đúng tại $x=0$.
8) Ta có

$$
e^{x} \cos x=\operatorname{Re}\left(e^{(1+i) x}\right)
$$

Đặt $\mathrm{z}:=(1+\mathrm{i}) \mathrm{x}=\sqrt{2} \mathrm{e}^{\mathrm{i} \frac{\pi}{4}} \mathrm{x}$. Ta được

$$
e^{z}=\sum_{n=0}^{\infty} \frac{(\sqrt{2})^{n} e^{i n \frac{\pi}{4}} x^{n}}{n!}=\sum_{n=0}^{\infty} \frac{(\sqrt{2})^{n}}{n!} \cos \frac{n \pi}{4} x^{n}+i \sum_{n=0}^{\infty} \frac{(\sqrt{2})^{n}}{n!} \sin \frac{n \pi}{4} x^{n}
$$

27.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

Do đó

$$
e^{x} \cos x=\sum_{n=0}^{\infty} \frac{(\sqrt{2})^{n}}{n!} \cos \frac{n \pi}{4} x^{n}, \quad \forall x \in \mathbf{R}
$$

Ta cūng được

$$
\mathrm{e}^{\mathrm{x}} \sin x=\operatorname{Im}\left(\mathrm{e}^{(1+\mathrm{i}) \mathrm{x}}\right)=\sum_{\mathrm{n}=0}^{\infty} \frac{(\sqrt{2})^{\mathrm{n}}}{\mathrm{n}!} \sin \frac{\mathrm{n} \pi}{4} x^{n} \quad \forall x \in \mathbf{R}
$$

15. Hàm sóf $f(x)$ khả vi vô hạn lần tại mọi $x \neq 0$. Nay ta xét tại $x=0$.

Khi $x \rightarrow 0,-\frac{1}{x^{2}} \rightarrow-\infty, f(x)=e^{-\frac{1}{x^{2}}} \rightarrow 0=f(0)$, vậy $f(x)$ liên tục tại $x=0$.
Để xét xem $f(x)$ có khả vi tại $x=0$ hay không, ta tìm $\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{1}{h} e^{-\frac{1}{h^{2}}}=\lim _{t \rightarrow \infty} \frac{t}{e^{t^{2}}}$ (ở đây ta đā đặt $t=\frac{1}{h}$).
Rõ ràng giới hạn cūng tồn tại và bằng 0 , vậy $f(x)$ khả vi tại $x=0$ và $f^{\prime}(0)=0$.
Ta lại xét xem $f^{\prime}(x)$ có khả vi tại $x=0$ hay không. Ta có

$$
\begin{gathered}
f^{\prime}(x)=\frac{2}{x^{3}} e^{-\frac{1}{x^{2}}} n e ̂ u x \neq 0 \\
\lim _{h \rightarrow 0} \frac{f^{\prime}(h)-f^{\prime}(0)}{h}=\lim _{h \rightarrow 0} \frac{2}{h^{4}} e^{-\frac{1}{h^{2}}}=\lim _{t \rightarrow \infty} \frac{2 t^{4}}{e^{t^{2}}}=0 .
\end{gathered}
$$

Vậy $f^{\prime}(x)$ cũng khả vi tại $x=0$ và $f^{\prime \prime}(0)=0$.
Bây giờ ta chứng minh bằng quy nạp rà̀ng $\forall \mathrm{n} \in \mathrm{N}$

$$
f^{(n)}(x)=\left\{\begin{array}{cl}
P_{n}\left(\frac{1}{x}\right) e^{-\frac{1}{x^{2}}} & \text { nếu } x \neq 0 \\
0 & \text { nêu } x=0
\end{array}\right.
$$

27.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
trong đó $\mathrm{P}_{\mathrm{n}}\left(\frac{1}{\mathrm{x}}\right)$ là một đa thức nào đó (không nhất thiết bậc n) của $\frac{1}{x}$. Giả sủ̉ điều đó đúng với n. Ta có $\forall x \neq 0$

$$
f^{(n+1)}(x)=-\frac{1}{x^{2}} P_{n}^{\prime}\left(\frac{1}{x}\right) e^{-\frac{1}{x^{2}}}+P_{n}\left(\frac{1}{x}\right)\left(\frac{2}{x^{3}}\right) e^{-\frac{1}{x^{2}}}=P_{n+1}\left(\frac{1}{x}\right)
$$

trong đó $P_{n+1}\left(\frac{1}{x}\right)=-\frac{1}{x^{2}} P_{n}^{\prime}\left(\frac{1}{x}\right)+2 \cdot \frac{1}{x^{3}} P_{n}\left(\frac{1}{x}\right)$ cūng là một da thức của $\frac{1}{x}$. Ta lại có

$$
\lim _{h \rightarrow 0} \frac{f^{(n)}(h)-f^{(n)}(0)}{h}=\lim _{h \rightarrow 0} \frac{1}{h} P_{n}\left(\frac{1}{h}\right) e^{-\frac{1}{h^{2}}}=\lim _{t \rightarrow \infty} \frac{t P_{n}(t)}{e^{t^{2}}}=0
$$

Vậy $\mathrm{f}^{(\mathrm{n}+1)}(0)=0$, đó là điều cần chứng minh. Tóm lại hàm só $\mathrm{f}(\mathrm{x})$ có đạo hàm mọi cấp tại $\mathrm{x}=0$ và $\mathrm{f}^{(\mathrm{n})}(0)=0 \forall \mathrm{n} \in \mathrm{N}$. Do đó nếu hàm só́ $\mathrm{f}(\mathrm{x})$ có thể khai triển được thành chuồi Taylor ở lân cận $x=0$ thì ta có

$$
f(x)=\sum_{n=0}^{\infty} 0 \cdot x^{n}=0
$$

điều này vô lí, vì $\mathrm{e}^{-\frac{1}{\mathrm{x}^{2}}}>0 \quad \forall \mathrm{x} \neq 0$.
16. $u_{n}(x)=a_{n} x^{n}$, trong đọ́ $a_{n}=\left(1+\frac{(-1)^{n}}{n}\right)^{n^{2}} \cdot$ Ta có

$$
\sqrt[n]{\left|a_{n}\right|}=\left(1+\frac{(-1)^{n}}{n}\right)^{n}
$$

Nếu $n=2 p, \sqrt[2 p]{\left|a_{2 p}\right|}=\left(1+\frac{1}{2 p}\right)^{2 p} \rightarrow$ e khi $\mathrm{p} \rightarrow \infty$.
27.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

Nếu $n=2 p+1, \sqrt[2 p+1]{\left|a_{2 p+1}\right|}=\left(1-\frac{1}{2 p+1}\right)^{2 p+1} \rightarrow \frac{1}{e}$ khi $p \rightarrow \infty$.
Vậy chưa thể kết luận được gì.
Bây giợ ta xét riêng hai chuởi luỹ thừa $\sum_{\mathrm{p}=1}^{\infty} \mathrm{a}_{2 \mathrm{p}} \mathrm{x}^{2 \mathrm{p}}$, và $\sum_{\mathrm{p}=1}^{\infty} \mathrm{a}_{2 \mathrm{p}-1} \mathrm{x}^{2 \mathrm{p}-1}$. Đặt

$$
\begin{aligned}
& \sigma_{p}=a_{2} x^{2}+a_{4} x^{4}+\ldots+a_{2 p} x^{2 p} \\
& \sigma_{p}^{\prime}=a_{1} x+a_{3} x^{3}+\ldots+a_{2 p-1} x^{2 p-1} .
\end{aligned}
$$

Dùng công thức khai triển hữu hạn của hàm số $\ln (1+\mathrm{x})$, khi $\mathrm{x} \rightarrow 0$, ta được

$$
a_{2 p}=e^{4 p^{2} \ln \left(1+\frac{1}{2 p}\right)}=e^{4 p^{2}\left(\frac{1}{2 p}-\frac{1}{8 p^{2}}+o\left(\frac{1}{p^{2}}\right)\right)}
$$

Do đó

$$
a_{2 p}=e^{2 p-\frac{1}{2}+o(1)} \sim e^{-\frac{1}{2}} e^{2 p} .
$$

Suy га

$$
a_{2 p} x^{2 p} \sim e^{-\frac{1}{2}}(e x)^{2 p} .
$$

Vậy chuỗi luỹ thừa $\sum_{\mathrm{p}=1}^{\infty} \mathrm{a}_{2 \mathrm{p}} \mathrm{x}^{2 \mathrm{p}}$ hội tụ khi $|\mathrm{ex}|<1$, tức là $|\mathrm{x}|<\frac{1}{\mathrm{e}}$, phân kì nếu $|\mathrm{x}| \geq \frac{1}{\mathrm{e}}$.
Tương tự, ta được

$$
a_{2 p-1} \sim e^{-\frac{1}{2}} e^{-(2 p-1)}, a_{2 p-1} x^{2 p-1} \sim\left(\frac{x}{e}\right)^{2 p-1} \text { khi } p \rightarrow \infty
$$

27.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2Q12

Vậy chuōi luỹ thừa $\sum_{p=1}^{\infty} a_{2 p-1} x^{2 p-1}$ hội tụ tuyệ̀ đơii nếu $|x|<e$, phân kì nếu $|\mathrm{x}| \geq \mathrm{e}$. Như vạy : Nếu $|\mathrm{x}|<\frac{1}{\mathrm{e}}$, các tổng riêng σ_{p} và $\sigma_{\mathrm{p}}^{\prime}$ dần tới những giới hạn σ, σ^{\prime} hữu hạn khi $\mathrm{p} \rightarrow \infty$. Nếu gọi S_{n} là tổng riêng thứ n của chuôi luỹ thừa đã cho thì $S_{2 p}=\sigma_{p}+\sigma_{p}^{\prime}$ dần tới $\sigma+\sigma^{\prime}$ khi $p \rightarrow \infty ; \mathrm{S}_{2 \mathrm{p}+1}=\sigma_{\mathrm{p}}+\sigma_{\mathrm{p}+1}^{\prime}$ cưng dần tới $\sigma+\sigma^{\prime}$ khi $p \rightarrow \infty$. Do đó chuối luỹ thừa $\sum_{n=1}^{\infty} a_{n} x^{n}$ đã cho hội tụ.
Nếu $|x| \geq \frac{1}{\mathrm{e}}, \mathrm{a}_{2 \mathrm{p}} \mathrm{x}^{2 \mathrm{p}}$ không dần tới 0 khi $\mathrm{p} \rightarrow \infty$, vạy a_{n} không dần tới 0 khi $\mathrm{n} \rightarrow \infty$, chuổi đã cho phân kì.
Vậy bán kính hội tụ của chuōi luỹ thừa đã cho là $R=\frac{1}{\mathrm{e}}$.
17. 1) Nếu $|x|<R^{\prime}$, chuỗi $\sum_{n=1}^{\infty} b_{n} x^{n}$ hội tụ tuyệt đới. Nhưng vì $\left|\mathrm{a}_{\mathrm{n}}\right| \leq\left|\mathrm{b}_{\mathrm{n}}\right| \quad \forall \mathrm{n} \geq \mathrm{n}_{\mathrm{o}}$, nên $\left.\left|\mathrm{a}_{\mathrm{n}}\right|\right|_{\mathrm{x}}{ }^{\mathrm{n}}\left|\leq\left|\mathrm{b}_{\mathrm{n}}\right|\right|_{\mathrm{x}}{ }^{\mathrm{n}} \mid$, do đó chuō̃i $\sum_{n=1}^{\infty} \mathrm{a}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}}$ cūng hội tụ̣ tuyệ̀ dới. Suy ra $\mathrm{R}^{\prime} \leq R$.
2) Vì $\left|a_{n}\right| \sim\left|b_{n}\right|$ khi $n \rightarrow \infty$, nên tồn tại só nguyên dương n_{o} sao cho với $n \geq n_{0}$ ta có

$$
\frac{1}{2}\left|a_{n}\right| \leq\left|b_{n}\right| \leq 2\left|a_{n}\right| .
$$

Do 1), từ bất đả̉ng thức đầu ta có $R^{\prime} \leq R$, tù bât đẳng thức sau ta có $R \leq R^{\prime}$. Vì vạy $R=R$.
3) a) $u_{n}(x)=a_{n} x^{n}$, trong đó $a_{n}=\frac{\operatorname{ch} n}{\operatorname{sh}^{2} n}$. Ta có

$$
a_{n} \sim \frac{2 e^{n}}{e^{2 n}}=\frac{2}{e^{n}} \text { khi } n \rightarrow \infty
$$

Đặt $b_{n}=\frac{2}{e^{n}}$, ta có

$$
\lim _{n \rightarrow \infty} \frac{\left|b_{n+1}\right|}{\left|b_{n}\right|}=\frac{1}{e}
$$

Vậy $R=e$.
b) $\mathrm{u}_{\mathrm{n}}(\mathrm{x})=\mathrm{a}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}}$, trong đó $\mathrm{a}_{\mathrm{n}}=\arccos \left(1-\frac{1}{\mathrm{n}^{2}}\right)$. Khi $\mathrm{n} \rightarrow \infty$ $\arccos \left(1-\frac{1}{n^{2}}\right) \rightarrow 0$, do đ 6

$$
\begin{aligned}
& \arccos \left(1-\frac{1}{n^{2}}\right) \sim \sin \left(\arccos \left(1-\frac{1}{n^{2}}\right)\right)= \\
= & \sqrt{1-\cos ^{2} \arccos \left(1-\frac{1}{n^{2}}\right)}=\left(1-\left(1-\frac{1}{n^{2}}\right)^{2}\right)^{\frac{1}{2}}= \\
= & \frac{\sqrt{2}}{n}\left(1-\frac{1}{2 n^{2}}\right)^{\frac{1}{2}}=\frac{\sqrt{2}}{n}\left[1-\frac{1}{4 n^{2}}+o\left(\frac{1}{n^{2}}\right)\right] \sim \frac{\sqrt{2}}{n} .
\end{aligned}
$$

Bằng quy tắc D'Alembert, dễ dàng thấy rằng bán kính hội tụ của chuỗi luỹ thừa $\sum_{n=1}^{\infty} \frac{\sqrt{2}}{n} x^{n}$ bằng 1 , vậy bán kính hội tụ của chuỗi luỹ thừa đã cho bằng 1 .
c) $u_{n}(x)=a_{n} x^{n}$, trong đó

$$
a_{n}=\sqrt[n]{n+1}-\sqrt[n]{n}=\sqrt[n]{n}\left(\sqrt[n]{\frac{n+1}{n}}-1\right)=e^{\frac{1}{n} \ln n}\left(\cdot\left(e^{\frac{1}{n} \ln \left(1+\frac{1}{n}\right)}-1\right)\right.
$$

27.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

Khi $n \rightarrow \infty, \frac{1}{n} \ln n \rightarrow 0$, nên $\mathrm{e}^{\frac{1}{n} \ln n} \rightarrow 1$. Vì $\frac{1}{n} \ln \left(1+\frac{1}{n}\right) \rightarrow 0$ khi $\mathrm{n} \rightarrow \infty$, nên

$$
\mathrm{e}^{\frac{1}{n} \ln \left(1+\frac{1}{n}\right)}-1 \sim \frac{1}{n} \ln \left(1+\frac{1}{n}\right) \sim \frac{1}{n^{2}}
$$

Vạy $a_{n} \sim \frac{1}{n^{2}}$ khi $n \rightarrow \infty$, mà bán kính hội tư của chuỗi $\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}}$ bằng 1, vậy bán kính hội tụ của chuổi luỹ thừa đā cho bằng 1 .
d) $u_{n}(x)=a_{n} x^{n}$, trong đó

$$
a_{n}=\cos \left(\pi \sqrt{n^{2}+n+1}\right)=\cos \left(\pi n\left(1+\frac{1}{n}+\frac{1}{n^{2}}\right)^{\frac{1}{2}}\right)
$$

Nhưng

$$
\begin{aligned}
\left(1+\frac{1}{n}+\frac{1}{n^{2}}\right)^{\frac{1}{2}} & =1+\frac{1}{2}\left(\frac{1}{n}+\frac{1}{n^{2}}\right)-\frac{1}{8}\left(\frac{1}{n}+\frac{1}{n^{2}}\right)^{2}+0\left(\left(\frac{1}{n}+\frac{1}{n^{2}}\right)^{2}\right) \\
& =1+\frac{1}{2 n}+\frac{3}{8 n^{2}}+o\left(\frac{1}{n^{2}}\right)
\end{aligned}
$$

Do dó

$$
a_{n}=\cos \left(\pi n+\frac{\pi}{2}+\frac{3 \pi}{8 n}+o\left(\frac{1}{n}\right)\right) \sim(-1)^{n+1} \frac{3 \pi}{8 n}
$$

khi $n \rightarrow \infty$. Bán kính hội tụ của chuỗi luỹ thừa $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{3 \pi}{8 n}$ bằng 1 , vậy bán kính hội tụ của chuồi luỹ thừa đã cho bằng 1 .
18. 1) Ta có công thức

$$
\mathrm{e}^{\mathrm{x}}=1+\frac{\mathrm{x}}{1!}+\frac{\mathrm{x}^{2}}{2!}+\cdots+\frac{\mathrm{x}^{n}}{\mathrm{n}!}+\cdots
$$

Nếu ta tính gần đúng bởi công thức

$$
e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}
$$

thì sai số tuyệt đối phạm phải là

$$
\left|R_{n}(x)\right|=\frac{e^{\xi}}{(n+1)!}|x|^{n+1}
$$

trong dó $\xi=\theta \mathrm{x}, 0<\theta<1$. Thay $\mathrm{x}=\frac{1}{2}$, ta có

$$
\begin{gathered}
\sqrt{e}=e^{\frac{1}{2}} \approx 1+\frac{1}{1!2}+\frac{1}{2!2^{2}}+\cdots+\frac{1}{n!2^{n}} \\
\left|R_{n}\left(\frac{1}{2}\right)\right|=\frac{e^{\xi}}{(n+1)!} \frac{1}{2^{n+1}}<\frac{3}{(n+1)!} \cdot \frac{1}{2^{n+1}} .
\end{gathered}
$$

Ta cần xác định n để $\left|\mathrm{R}_{\mathrm{n}}\left(\frac{1}{2}\right)\right|<10^{-4}$. Ta có

$$
\begin{aligned}
& \left\lvert\, \mathrm{R}_{4}\left(\frac{1}{2}\right)<\frac{3}{5!2^{5}}=\frac{1}{1280}\right. \\
& \left|\mathrm{R}_{5}\left(\frac{1}{2}\right)\right|<\frac{3}{6!2^{6}}=\frac{1}{15360} \leq 10^{-4}
\end{aligned}
$$

Vậy ta lấy $\mathrm{n}=5$, do đó

$$
\begin{aligned}
& \sqrt{\mathrm{e}} \approx 1+\frac{1}{1!2}+\frac{1}{2!2^{2}}+\frac{1}{3!2^{3}}+\frac{1}{4!2^{4}}+\frac{1}{5!2^{5}}= \\
= & 1,00000+0,50000+0,12500+0,02083+0,00260+0,00026 \\
= & 1,6487 .
\end{aligned}
$$

2) Áp dụng công thức khai triển $(1+x)^{\frac{1}{5}}$ với $x=0,1$, ta được

$$
\begin{aligned}
& \sqrt[5]{1,1}=(1+0,1)^{\frac{1}{5}}= \\
= & 1+\frac{1}{5} \cdot(0,1)+\frac{1}{2!}\left(\frac{1}{5}\right)\left(-\frac{4}{5}\right) \cdot(0,1)^{2}+\frac{1}{3!}\left(\frac{1}{5}\right)\left(-\frac{4}{5}\right)\left(-\frac{9}{5}\right) \cdot(0,1)^{3}+\ldots= \\
= & 1+0,02-0,0008+0,00004-\ldots
\end{aligned}
$$

Vì ta có một chuỗi só đan dấu thoả mãn các điều kiện của định lí Leibnitz, mà só hạng thứ tư đã nhỏ hơn $0,000 \mathrm{I}$, nên

$$
\sqrt[5]{1,1}=1+0,02-0,0008=1,0192
$$

3) Áp dụng công thức khai triển $\ln (1+x)$ với $x=0,04$, ta được

$$
\begin{aligned}
\ln (1,04) & =\ln (1+0,04)=0,04-\frac{1}{2}(0,04)^{2}+\frac{1}{3}(0,04)^{3}-\cdots \\
& =0,04-0,0008+0,00002-\cdots
\end{aligned}
$$

Vì ta được một chuỗi só đan đấu thoả mãn các điểu kiện của định lí Leibniz mà số hạng 0,00002 đã nhỏ hơn 0,0001 nén ta chỉ cần tính tổng của 2 só hạng đầu. Ta được

$$
\ln (1,04) \approx 0,04-0,0008=0,0392
$$

19. 20) Từ công thức khai triển hàm $\mathrm{s} \delta \mathrm{e}^{\mathrm{x}}$, ta có

$$
e^{-x^{2}}=1-\frac{x^{2}}{1!}+\frac{x^{4}}{2!}-\frac{x^{6}}{3!}+\cdots+(-1)^{n} \frac{x^{2 n}}{n!}+\cdots, \quad R=\infty
$$

Do đó

$$
\int_{0}^{1} \mathrm{e}^{-\mathrm{x}^{2}} \mathrm{dx}=1-\frac{1}{3}+\frac{1}{2!5}-\frac{1}{3!7}+\cdots+(-1)^{\mathrm{n}} \frac{1}{\mathrm{n}!(2 \mathrm{n}+1)}+\cdots
$$

Vế phải là mợt chuồi số đan dấu thoả mãn các điều kiện của định lí Leibniz, nên nếu ta tính gần đúng nó bằng tổng của n số hạng đầu tiên thì sai số tuyệt đối phạm phải $\left|R_{n}\right|$ được xác định bởi

$$
\left|R_{n}\right| \leq \frac{1}{(n+1)!(2 n+3)}
$$

Cần xác định n để

$$
\begin{aligned}
& \frac{1}{(\mathrm{n}+1)!(2 \mathrm{n}+3)} \leq 10^{-3} . \text { Do đó } \mathrm{n} \geq 4 . \text { Vậy } \\
& \begin{aligned}
\int_{0}^{1} \mathrm{e}^{-\mathrm{x}^{2}} \mathrm{dx} & \approx 1-\frac{1}{3}+\frac{1}{10}-\frac{1}{42}+\frac{1}{216} \\
& \approx 1-0,3333+0,1-0,0238+0,0046
\end{aligned}
\end{aligned}
$$

27.0.0.1 dewnloaded 6038 226 .pdf ht Tue Jul 31 08:30:34 ICT 2012
2) Ta có

$$
\operatorname{shx}=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots+\frac{x^{2 n+1}}{(2 n+1)!}+\cdots, R=\infty
$$

Do đó

$$
\operatorname{sh}\left(x^{2}\right)=x^{2}+\frac{x^{6}}{3!}+\frac{x^{10}}{5!}+\cdots+\frac{x^{4 n+2}}{(2 n+1)!}+\cdots
$$

Vậy

$$
\begin{equation*}
\int_{0}^{1} \operatorname{sh}\left(x^{2}\right) d x=\frac{1}{3}+\frac{1}{3!7}+\frac{1}{5!11}+\cdots+\frac{1}{(2 n+1)!(4 n+3)}+\cdots \tag{*}
\end{equation*}
$$

Đặt $u_{n}=\frac{1}{(2 n+1)!(4 n+3)}$. Ta có

$$
\frac{u_{n+1}}{u_{n}}=\frac{4 n+3}{4 n+7} \cdot \frac{1}{(2 n+2)(2 n+3)} \leq
$$

$$
\leq \frac{1}{(2 n+2)(2 n+3)} \leqslant \frac{1}{(2+2)(2+3)}=
$$

$$
=\frac{1}{20} \quad \forall \mathrm{n} \geq 1
$$

Do đó

$$
u_{n}=\frac{u_{n}}{u_{n-1}} \cdot \frac{u_{n-1}}{u_{n-2}} \ldots \frac{u_{2}}{\mathbf{u}_{1}} \cdot u_{1} \leq\left(\frac{1}{20}\right)^{n-1} u_{1} .
$$

Nếu gọi R_{n} là phẩn dự thứ n của chuôi số (*), ta có

$$
\mathrm{R}_{\mathrm{n}}=\sum_{\mathrm{k}=\mathrm{n}}^{\infty} \mathrm{u}_{\mathrm{k}} \leq \mathrm{u}_{\mathrm{i}} \cdot \sum_{\mathrm{k}=\mathrm{n}}^{\infty}\left(\frac{1}{20}\right)^{\mathrm{k}-1}=\frac{\mathrm{u}_{1}}{19 .(20)^{\mathrm{n}-2}} .
$$

Nhưng $\mathrm{u}_{1}=\frac{1}{3!7}=\frac{1}{42}$, nên $\mathrm{R}_{\mathrm{n}} \leq \frac{1}{798 .(20)^{\mathrm{n}-2}}$.

Nếu lấy $\mathrm{n}=3$, ta có

$$
\mathrm{R}_{3} \leq \frac{1}{15960}<7.10^{-5}
$$

Vậy

$$
\begin{aligned}
\int_{0}^{1} \operatorname{sh}\left(\mathrm{x}^{2}\right) \mathrm{dx} & \approx \frac{1}{3}+\frac{1}{42}+\frac{1}{1320}+\frac{1}{75600} \\
& \approx 0,33333+0,02381+0,00076+0,00001 \\
& \approx 0,3579
\end{aligned}
$$

20. Ta có

$$
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!} \cdots \cdots+(-1)^{n} \frac{x^{2 n}}{(2 n)!}+\cdots, R=\infty
$$

Do đó

$$
\cos 18^{\circ}=\cos \frac{\pi}{10}=
$$

$$
=1-\frac{1}{2!}\left(\frac{\pi}{10}\right)^{2}+\frac{1}{4!}\left(\frac{\pi}{10}\right)^{4}-\cdots+(-1)^{n} \frac{1}{(2 n)!}\left(\frac{\pi}{10}\right)^{2 n}+\cdots
$$

Vế phải là mợt chuỗi số đan đấu thoả mān các điều kiện của định lí Leibniz. Vì $\frac{1}{6!}\left(\frac{\pi}{10}\right)^{6}<0,0001$, nên chỉ cẩn tính tổng của 3 số hạng đầu của chuỗi só trên. Ta có

$$
\left(\frac{\pi}{10}\right)^{2} \approx 0,09870 ;\left(\frac{\pi}{10}\right)^{3} \approx 0,03101
$$

Vậy $\quad \cos 18^{\circ} \approx 1-\frac{0,09870}{2}+\frac{0,03101}{24}=0,9519$.
21. Đồ thị của $\mathrm{f}(\mathrm{x})$ được cho ở hình 24. Hàm số ấy thoả mãn các điều kiện của định lí Dirichlet, nên có thể khai triển được thành chuổi Fourier. Vì hàm s ó $f(x)$ lè nền $a_{n}=0, n=0,1,2, \ldots$

Hinh 24
Ta tính b_{n}. Bằng phương pháp tích phân từng phần, ta được

$$
\begin{aligned}
\mathbf{b}_{\mathrm{n}} & =\frac{2}{\pi} \int_{0}^{\pi}(\pi-x) \sin n x d x=2 \int_{0}^{\pi} \sin n x d x-\frac{2}{\pi} \int_{0}^{\pi} x \sin n x d x= \\
& =-\left.2 \frac{\cos n x}{n}\right|_{0} ^{\pi}-\frac{2}{\pi}\left[-\left.x \frac{\cos n x}{n}\right|_{0} ^{\pi}-\int_{0}^{\pi} \frac{\cos n x}{n} d x\right]= \\
& =\frac{2}{n}\left[1-(-1)^{n}\right]+\frac{2}{\pi}\left[\pi \cdot \frac{(-1)^{n}}{n}-\left.\frac{\sin n x}{n^{2}}\right|_{0} ^{\pi}\right]=\frac{2}{n}, n=1,2,3, \ldots
\end{aligned}
$$

Vậy

$$
f(x)=2\left(\frac{\sin x}{1}+\frac{\sin 2 x}{2}+\cdots+\frac{\sin n x}{n}+\cdots\right)
$$

với $x \neq 2 n \pi$. Tại $x=2 n \pi$, tổng của chuỗi Fourier ấy bầng

$$
\frac{1}{2}[f(2 n \pi+0)+f(2 n \pi-0)]=0
$$

22. Đồ thị của $\mathrm{f}(\mathrm{x})$ được cho ở hình 25 . Hàm só́ $\mathrm{f}(\mathrm{x})$ chẵn, nên $\mathrm{b}_{\mathrm{n}}=0$, $\mathrm{n}=1,2,3, \ldots$ Tính a_{n}, ta được

$$
\mathrm{a}_{\mathrm{o}}=\frac{2}{\pi} \int_{0}^{\pi}\left(1-\frac{2 \mathrm{x}}{\pi}\right) \mathrm{dx}=\left.\frac{2}{\pi}\left(\mathrm{x}-\frac{\mathrm{x}^{2}}{\pi}\right)\right|_{0} ^{\pi}=0
$$

27.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

Hinh 25

$$
\begin{aligned}
a_{n} & =\frac{2}{\pi} \int_{0}^{\pi}\left(1-\frac{2 x}{\pi}\right) \cos n x d x=\frac{2}{\pi} \int_{0}^{\pi} \cos n x d x-\frac{4}{\pi^{2}} \int_{0}^{\pi} x \cos n x d x= \\
& =-\frac{4}{\pi^{2}}\left[\left.x \frac{\sin n x}{n}\right|_{0} ^{\pi}-\int_{0}^{\pi} \frac{\sin n x}{n} d x\right]= \\
& =\left.\frac{4}{\pi^{2} n}\left(-\frac{\cos n x}{n}\right)\right|_{0} ^{\pi}=\frac{4}{\pi^{2} n^{2}}\left[1-(-1)^{n}\right]= \\
& = \begin{cases}\frac{8}{\pi^{2} n^{2}} & \text { nếu n lè } \\
0 & \text { nếu n chãn. }\end{cases}
\end{aligned}
$$

Vậy

$$
f(x)=\frac{8}{\pi^{2}}\left[\frac{\cos x}{1^{2}}+\frac{\cos 3 x}{3^{2}}+\cdots+\frac{\cos (2 n+1) x}{(2 n+1)^{2}}+\cdots\right]
$$

$\forall x \in \mathbf{R}$, vì $f(\dot{x})$ liên tục tại mọi $x \in \mathbf{R}$. Cho $x=0$, ta được

$$
1=\frac{8}{\pi^{2}} \sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{2}}
$$

Do đó

$$
\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{2}}=\frac{\pi^{2}}{8}
$$

23. Đồ thị của $\mathrm{f}(\mathrm{x})$ được cho ở hình 26. Hàm số $\mathrm{f}(\mathrm{x})$ chẩn nên $\mathrm{b}_{\mathrm{n}}=0$, $\mathrm{n}=1,2,3, \ldots$ Tinh a_{n}, ta dược

$$
\begin{aligned}
& a_{0}=\frac{2}{\pi} \int_{0}^{\pi}\left(1-\frac{x^{2}}{\pi^{2}}\right) d x=\left.\frac{2}{\pi}\left(x-\frac{x^{3}}{3 \pi^{2}}\right)\right|_{0} ^{\pi}=\frac{4}{3} \\
& a_{n}=\frac{2}{\pi} \int_{0}^{\pi}\left(1-\frac{x^{2}}{\pi^{2}}\right) \cos n x d x
\end{aligned}
$$

Dùng phương pháp tích phân từng phần hai lần để tính tích phân áy, ta dược

$$
\begin{aligned}
a_{n} & =\frac{2}{\pi} \int_{0}^{\pi} \cos n x d x-\frac{2}{\pi^{3}} \int_{0}^{\pi} x^{2} \cos n x d x= \\
& =-\frac{2}{\pi^{3}}\left[\left.x^{2} \frac{\sin n x}{n}\right|_{0} ^{\pi}-\int_{0}^{\pi} 2 x \frac{\sin n x}{n} d x\right]=\frac{4}{\pi^{3} n} \int_{0}^{\pi} x \sin n x d x= \\
& =\frac{4}{\pi^{3} n}\left[-\left.x \frac{\cos n x}{n}\right|_{0} ^{\pi}+\int_{0}^{\pi} \frac{\cos n x}{n} d x\right]= \\
& =\frac{4}{\pi^{3} n}\left[\frac{(-\pi)(-1)^{n}}{n}+\left.\frac{\sin n x}{n^{2}}\right|_{0} ^{\pi}\right]=(-1)^{n+1} \frac{4}{\pi^{2} n^{2}}
\end{aligned}
$$

Hinh 26
Vì $\mathrm{f}(\mathrm{x})$ thoả mān các điều kiện của định lí Dirichlet và liên tục tại mọi $x \in \mathbf{R}$, nên ta có $\forall x \in \mathbf{R}$

$$
\begin{equation*}
f(x)=1-\frac{x^{2}}{\pi^{2}}=\frac{2}{3}-\frac{4}{\pi^{2}} \sum_{n=1}^{\infty}(-1)^{n} \frac{\cos n x}{n^{2}} \tag{*}
\end{equation*}
$$

Thế $\mathrm{x}=\pi$ vào hai vế của đẳng thức $\left(^{*}\right)$, ta được

$$
0=\frac{2}{3}-\frac{4}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \Rightarrow \sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

Thế $x=0$ vào hai vế của đẳng thức $\left({ }^{(*)}\right.$, ta được

$$
1=\frac{2}{3}-\frac{4}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \Rightarrow \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}=-\frac{\pi^{2}}{12} .
$$

Áp dụng công thức Parseval vào hàm s ó $f(x)=1-\frac{x^{2}}{\pi^{2}}$, ta được

$$
\begin{gathered}
\frac{4}{9}+\frac{8}{\pi^{4}} \sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(1-\frac{x^{2}}{\pi^{2}}\right)^{2} d x=\frac{8}{15} \\
\Rightarrow \sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{8}\left(\frac{8}{15}-\frac{4}{9}\right)=\frac{\pi^{4}}{90}
\end{gathered}
$$

24. Đồ thị của $\mathrm{f}(\mathrm{x})$ được cho ở hình 27. Hàm sô $\mathrm{f}(\mathrm{x})$ lẻ nên $\mathrm{a}_{\mathrm{n}}=0$, $\mathrm{n}=0,1,2, \ldots$ Tính b_{n}, ta được

$$
\begin{aligned}
& b_{n}=\frac{2}{\pi} \int_{0}^{\pi} \sin \frac{x}{2} \sin n x d x=\frac{2}{\pi} \int_{0}^{\pi} \frac{1}{2}\left[\cos \left(\frac{1}{2}-n\right) x-\cos \left(\frac{1}{2}+n\right) x\right] d x \\
& =\frac{1}{\pi}\left[\left.\left.\frac{\sin \left(\frac{1}{2}-n\right) x_{0}^{2}}{\frac{1}{2}-n}\right|_{0} ^{\pi}-\frac{\sin \left(\frac{1}{2}+n\right) x_{1}^{2}}{\frac{1}{2}+n} \right\rvert\, \begin{array}{l}
\pi \\
0
\end{array}\right] \\
& =\frac{1}{\pi}\left[\frac{\sin \left(\frac{\pi}{2}-n \pi\right)}{\frac{1}{2}-n}-\frac{\sin \left(\frac{\pi}{2}+n \pi\right)}{\frac{1}{2}+n}\right]
\end{aligned}
$$

27.0.0.1 232 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

$$
\begin{aligned}
& =\frac{1}{\pi}\left[\frac{\cos n \pi}{\frac{1}{2}-n}-\frac{\cos n \pi}{\frac{1}{2}+n}\right]=\frac{1}{\pi}(-1)^{n}\left(\frac{2}{1-2 n}-\frac{2}{1+2 n}\right) \\
& =\frac{8}{\pi}(-1)^{n+1} \frac{n}{4 n^{2}-1} .
\end{aligned}
$$

Hinh 27
Hàm só́ $f(x)$ liên tục và có đạo hàm liên tục tại mọi $x \neq(2 n+1) \pi$, nố thoả mãn các điều kiện của định lí Dirichlet nên khai triển được thành chuỗi Fourier. Ta có $\forall x \neq(2 n+1) \pi$

$$
f(x)=\sin \frac{x}{2}=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n}{4 n^{2}-1} \sin n x
$$

Tại $x=(2 n+1) \pi$, tông của chuỗi Fourier ấy bằng 0 .
25. Đồ thị của $f(x)$ được cho ở hình 28 . Hàm số $f(x)$ chẳn, nên $b_{n}=0$, $\mathrm{n}=1,2, \ldots$ Tính a_{n}, ta được

$$
\begin{aligned}
& a_{o}=\frac{2}{\pi} \int_{0}^{\pi} \cos a x d x=\left.\frac{2}{\pi}\left(\frac{\sin a x}{a}\right)\right|_{0} ^{\pi}=2 \frac{\sin \pi a}{\pi a} \\
& a_{n}=\frac{2}{\pi} \int_{0}^{\pi} \cos a x \cos n x d x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2}{\pi} \int_{0}^{\pi} \frac{\cos (a+n) x+\cos (a-n) x}{2} d x \\
& =\frac{1}{\pi}\left[\frac{\sin (a+n) \pi}{a+n}+\frac{\sin (a-n) \pi}{a-n}\right] .
\end{aligned}
$$

Nhung

$$
\sin (a+n) \pi=\sin (a-n) \pi=(-1)^{n} \sin a \pi, \forall n \in N
$$

Do đó

$$
a_{n}=(-1)^{n} \frac{\sin a \pi}{\pi}\left(\frac{1}{a+n}+\frac{1}{a-n}\right)=(-1)^{n} \frac{2 a \sin \pi a}{\pi\left(a^{2}-n^{2}\right)}, n=1,2, \ldots
$$

Hàm số $f(x)$ thoả mān các điều kiện của định lí Dirichlet, liên tục trên \mathbf{R}, nên ta có $\forall x \in \mathbf{R}$

Hinh 28

$$
f(x)=\frac{\sin \pi a}{\pi a}+\frac{2 a \sin \pi a}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n} \cos n x}{a^{2}-n^{2}}
$$

Thế $\mathrm{x}=\pi$ vào hai vế của đẩng thức ấy, ta được

$$
\cos \pi a=\frac{\sin \pi a}{\pi a}+\frac{2 a \sin \pi a}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n} \cos n \pi}{a^{2}-n^{2}}
$$

Nhưng $(-1)^{n} \cos n \pi=1$, nên nếu chia hai vế cho $\sin a \pi(\neq 0$ vì $0<\mathrm{a}<1$), ta được

$$
\operatorname{cotg} \pi \mathrm{a}=\frac{1}{\pi \mathrm{a}}+\frac{2 \mathrm{a}}{\pi} \sum_{n=1}^{\infty} \frac{1}{\mathrm{a}^{2}-\mathrm{n}^{2}}
$$

26. Đồ thị của $\mathrm{f}(\mathrm{x})$ được cho ở hình 29. Vì $\mathrm{f}(\mathrm{x})$ thoả mãn các diều kiện của định lí Dirichlet, nên tại mọi $\mathrm{x} \neq(2 \mathrm{n}+1) l$, ở đó $\mathrm{f}(\mathrm{x})$ liên tục, ta có $f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi x}{l}+b_{n} \sin \frac{n \pi x}{l}\right)$, trong dó

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{o}}=\frac{1}{l} \int_{-l}^{l} \mathrm{e}^{\mathrm{x}} \mathrm{dx}=\frac{\mathrm{e}^{l}-\mathrm{e}^{-l}}{l} \\
& \mathrm{a}_{\mathrm{n}}=\frac{1}{l} \int_{-l}^{l} \mathrm{e}^{\mathrm{x}} \cos \frac{\mathrm{n} \pi \mathrm{x}}{l} \mathrm{dx}, \mathrm{n}=1,2, \ldots \\
& \mathrm{~b}_{\mathrm{n}}=\frac{1}{l} \int_{-l}^{l} \mathrm{e}^{\mathrm{x}} \sin \frac{\mathrm{n} \pi \mathrm{x}}{l} \mathrm{dx}, \mathrm{n}=1,2, \ldots
\end{aligned}
$$

Hinh 29
Đặt

$$
\mathrm{I}_{\mathrm{n}}:=\int_{-l}^{l} \mathrm{e}^{\mathrm{x}} \cos \frac{\mathrm{n} \pi \mathrm{x}}{l} \mathrm{dx}, \mathrm{~J}_{\mathrm{n}}:=\int_{-l}^{l} \mathrm{e}^{\mathrm{x}} \sin \frac{\mathrm{n} \pi \mathrm{x}}{l} \mathrm{dx} .
$$

Ta có

$$
\mathrm{I}_{\mathrm{n}}=\left.\mathrm{e}^{\mathrm{x}} \frac{l}{\mathrm{n} \pi} \sin \frac{\mathrm{n} \pi \mathrm{x}}{l}\right|_{-l} ^{l}-\int_{-l}^{l} \frac{l}{\mathrm{n} \pi} \mathrm{e}^{\mathrm{x}} \sin \frac{\mathrm{n} \pi \mathrm{x}}{l} \mathrm{dx}=-\frac{l}{\mathrm{n} \pi} \mathrm{~J}_{n}=
$$

$$
\begin{aligned}
& =-\frac{l}{n \pi}\left[-\left.\mathrm{e}^{\mathrm{x}} \frac{l}{\mathrm{n} \pi} \cos \frac{\mathrm{n} \pi \mathrm{x}}{l}\right|_{-l} ^{l}+\frac{l}{\mathrm{n} \pi} \int_{-l}^{l} \mathrm{e}^{\mathrm{x}} \cos \frac{\mathrm{n} \pi \mathrm{x}}{l} \mathrm{dx}\right]= \\
& =\left(\frac{l}{\mathrm{n} \pi}\right)^{2}\left(\mathrm{e}^{l} \cos n \pi-\mathrm{e}^{l} \cos (-\mathrm{n} \pi)\right)-\left(\frac{l}{\mathrm{n} \pi}\right)^{2} \mathrm{I}_{\mathrm{n}} .
\end{aligned}
$$

Do đó

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{n}}\left(1+\frac{l^{2}}{\mathrm{n}^{2} \pi^{2}}\right)=(-1)^{\mathrm{n}}\left(\mathrm{e}^{l}-\mathrm{e}^{-l}\right) \frac{l^{2}}{\mathrm{n}^{2} \pi^{2}} \\
& \mathrm{I}_{\mathrm{n}}=(-1)^{\mathrm{n}}\left(\mathrm{e}^{l}-\mathrm{e}^{-l}\right) \frac{l^{2}}{l^{2}+\mathrm{n}^{2} \pi^{2}} \\
& \mathrm{~J}_{\mathrm{n}}=-(-1)^{\mathrm{n}}\left(\mathrm{e}^{l}-\mathrm{e}^{-l}\right) \pi l \frac{\mathrm{n}}{l^{2}+\mathrm{n}^{2} \pi^{2}}
\end{aligned}
$$

Suy ra

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{n}}=(-1)^{\mathrm{n}}\left(\mathrm{e}^{l}-\mathrm{e}^{-l}\right) \frac{l}{l^{2}+\mathrm{n}^{2} \pi^{2}}, \mathrm{n}=1,2, \ldots \\
& \mathrm{~b}_{\mathrm{n}}=-(-1)^{\mathrm{n}}\left(\mathrm{e}^{l}-\mathrm{e}^{-l}\right) \pi \frac{\mathrm{n}}{l^{2}+\mathrm{n}^{2} \pi^{2}}, \mathrm{n}=1,2, \ldots
\end{aligned}
$$

Vạy ta có $\forall x \neq(2 n+1) l$

$$
\begin{array}{r}
\mathrm{f}(\mathrm{x})=\frac{\mathrm{e}^{l}-\mathrm{e}^{-l}}{2 l}+l\left(\mathrm{e}^{l}-\mathrm{e}^{-l}\right) \sum_{\mathrm{n}=1}^{\infty}(-1)^{\mathrm{n}} \frac{\cos \frac{\mathrm{n} \pi \mathrm{x}}{l}}{l^{2}+\mathrm{n}^{2} \pi^{2}}- \\
-\pi\left(\mathrm{e}^{l}-\mathrm{e}^{-l}\right) \sum_{\mathrm{n}=1}^{\infty}(-1)^{\mathrm{n}} \frac{\mathrm{n} \sin \frac{\mathrm{n} \pi \mathrm{x}}{l}}{l^{2}+\mathrm{n}^{2} \pi^{2}}
\end{array}
$$

Tại $x=(2 n+1) l$, tổng của chuỗi Fourier ấy bằng

$$
\frac{1}{2}\left(\mathrm{e}^{l}+\mathrm{e}^{-l}\right)=\mathrm{ch} l .
$$

27.0.0.1 downnloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
27. Đồ thị của hàm sóf $\mathrm{f}(\mathrm{x})$ được cho ở hình 30 . Ta biết rằng có vô số cách xây dựng hàm số $g(x)$ tuẩn hoàn có chu kì lớn hơn hay bằng π, sao cho $g(x)=f(x) \forall x \in[0, \pi]$. Trong lời giải nảy, trước hết ta thác triển chấn hàm sof f $\mathrm{f}(\mathrm{x})$ bằng cách dặt

$$
\bar{f}(x):=\left\{\begin{array}{l}
f(x) \text { nếu } 0 \leq x \leq \pi \\
f(-x) \text { nếu }-\pi \leq x \leq 0
\end{array}\right.
$$

rồi gọi $g(x)$ là hàm số tuần hoàn có chu kì 2π, có giá trị bằng $\bar{f}(x)$ nếu $-\pi \leq \mathrm{x} \leq \pi$. Hàm số $\mathrm{g}(\mathrm{x})$ ấy thoả các diều kiện của định lí Dirichlet và liên tục trên \mathbf{R}, do đó có thể khai triển được thành chuỗi Fourier trên R. Vì $\mathrm{g}(\mathrm{x})$ chẵn, nên $\mathrm{b}_{\mathrm{n}}=0, \mathrm{n}=1,2, \ldots$ Tính a_{n}, ta được

Hinh 30

$$
\begin{aligned}
a_{0} & =\frac{2}{\pi} \int_{0}^{\pi} f(x) d x=\frac{2}{\pi}\left[\int_{0}^{\frac{\pi}{2}} x d x+\int_{\frac{\pi}{2}}^{\pi} \frac{\pi}{2} d x\right]=\frac{3 \pi}{4} \\
a_{n} & =\frac{2}{\pi}\left[\int_{0}^{\frac{\pi}{2}} x \cos n x d x+\int_{\frac{\pi}{2}}^{\pi} \frac{\pi}{2} \cos n x d x\right]= \\
& =\frac{2}{\pi}\left[\frac{\sin n x}{n}\left|\frac{\pi}{2}-\int_{0}^{\frac{\pi}{2}} \frac{\sin n x}{n} d x+\frac{\pi}{2} \frac{\sin n x}{n}\right| \frac{\pi}{2}\right]=
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2}{\pi}\left[\frac{\pi}{2} \frac{1}{n} \sin \frac{n \pi}{2}+\left.\frac{\cos n x}{n^{2}}\right|_{0} ^{\frac{\pi}{2}}-\frac{\pi}{2} \frac{1}{n} \sin \frac{n \pi}{2}\right]= \\
& =\frac{2}{\pi n^{2}}\left(\cos \frac{n \pi}{2}-1\right)=-\frac{4 \sin ^{2} \frac{n \pi}{4}}{\pi n^{2}}
\end{aligned}
$$

Do đó, ta có $\forall x \in \mathbf{R}$

$$
g(x)=\frac{3 \pi}{8}-\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin ^{2} \frac{n \pi}{4}}{\pi n^{2}} \cos n x
$$

Nhưng $g(x)=f(x)$ nếu $x \in[0, \pi]$, nên chuổi Fourier trên có tổng là $f(x)$ nếu $x \in[0, \pi]$.

Hinh 31
Ta cūng có thể thác triển lè hàm số $f(x)$ bằng cách đặt

$$
\bar{f}(x):=\left\{\begin{array}{l}
f(x) \quad \text { néu } 0 \leq x \leq \pi \\
-f(-x) \text { nếu }-\pi \leq x \leq 0
\end{array}\right.
$$

(hình 31 , gọi $h(x)$ là hàm số tuấn hoàn có chu kì 2π, có giá trị bằng $\overrightarrow{\mathrm{f}}(\mathrm{x})$ nếu $-\pi \leq \mathrm{x} \leq \pi$. Hàm s ó $\mathrm{h}(\mathrm{x})$ ấy cũng thoả mãn các điều kiện của định lí Dirichlet, nên cüng có thể khai triển được thành chuôi Fourier, đó cüng là chuōi Fourier của hàm só $f(x)$. Nhưng vì $h(x)$ có gián đoạn loại 1 tại $x=(2 n+1) \pi$, nên hệ só Fourier của nó là những vô cùng bé có cấp của $\frac{1}{n}$ khi $n \rightarrow \infty$, sự hội tụ của nó chậm hơn sự hội tụ của chuōi Fourier xây dựng ở trên.
28. 1) Đặt $u_{n}(x)=\frac{\sin ^{3} n x}{n!}$. Ta có

$$
\left|u_{n}(x)\right|=\frac{\left|\sin ^{3} n x\right|}{n!} \leq \frac{1}{n!} \quad \forall x \in \mathbf{R}
$$

Chuối số $\sum_{n=1}^{\infty} \frac{1}{n!}$ họ̣i tụ (do quy tấc D'Alembert), nên chuỗi hàm số $\sum_{n=1}^{\infty} u_{n}(x)$ hội tụ đều trên R. Các số hạng $u_{n}(x)$ liên tục trên R, do đó $f(x)$ liên tụ̣ trên \mathbf{R}. Ta cūng có $\forall x \in \mathbf{R}$

$$
\left|u_{n}^{\prime}(x)\right|=\frac{\left|3 \sin ^{2} n x \cos n x\right|}{(n-1)!} \leq \frac{3}{(n-1)!} .
$$

Chuỗi sớ $\sum_{n=1}^{\infty} \frac{3}{(n-1)!}$ hội tụ, nên chuỗi hàm số $\sum_{n=1}^{\infty} u_{n}^{\prime}(x)$ hội tụ đều trên \mathbf{R}, do đó $\mathrm{f}(\mathrm{x})$ khả vi trên \mathbf{R} và ta có

$$
f^{\prime}(x)=\sum_{n=1}^{\infty} u_{n}^{\prime}(x)=\sum_{n=1}^{\infty} \frac{3 \sin ^{2} n x \cos n x}{(n-1)!}
$$

Hơn nữa, vì các só hạng $\mathrm{u}_{\mathrm{n}}^{\prime}(\mathrm{x})$ liên tục trên R nên $\mathrm{f}^{\prime}(\mathrm{x})$ cūng liên tục trên \mathbf{R}.
Bạn đọc có thể chứng minh rằng hàm số $\mathrm{f}(\mathrm{x})$ có đạo hàm mọi cấp. 2) Ta có

$$
\begin{aligned}
\sin ^{3} n x & =\left(\frac{e^{i n x}-e^{-i n x}}{2 i}\right)^{3}=\frac{1}{8 i}(6 i \sin n x-2 i \sin 3 n x)= \\
& =\frac{3}{4} \sin n x-\frac{1}{4} \sin 3 n x
\end{aligned}
$$

Do đó

$$
f(x)=\frac{3}{4} \sum_{n=1}^{\infty} \frac{\sin n x}{n!}-\frac{1}{4} \sum_{n=1}^{\infty} \frac{\sin 3 n x}{n!}
$$

VẾ phải của đằng thức trên chính là chuỗi Fourier của hàm số $\mathrm{f}(\mathrm{x})$. trong đó $b_{n}=\frac{3}{4 . n!}$ nếu $n \neq 3 k, k \in N$

$$
b_{3 n}=\frac{3}{4 .(3 n)!}-\frac{1}{4 . n!} \text { với } n \geq 1 \text {. }
$$

Để tìm biểu thức của chuổi hàm số $\sum_{n=1}^{\infty} \frac{\sin n x}{n!}$, ta nhận xét rầng

$$
\sin x=\operatorname{Im}\left(e^{i x}\right)
$$

Do đó

$$
\sum_{n=1}^{\infty} \frac{\sin n x}{n!}=\sum_{n=0}^{\infty} \frac{\sin n x}{n!}=\operatorname{Im}\left(\sum_{n=0}^{\infty} \frac{\left(e^{i x}\right)^{n}}{n!}\right)
$$

Đặt $z=e^{i x}$, ta được

$$
\sum_{n=0}^{\infty} \frac{\left(e^{i x}\right)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}=e^{z}
$$

Vậy

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{\sin n x}{n!} & =\operatorname{Im}\left(e^{e^{i x}}\right)=\operatorname{Im}\left(e^{\cos x+i \sin x}\right)=\operatorname{Im}\left(e^{\cos x} \cdot e^{i \sin x}\right) \\
& =\operatorname{Im}\left[e^{\cos x}(\cos (\sin x)+i \sin (\sin x))\right] \\
& =e^{\cos x} \sin (\sin x)
\end{aligned}
$$

Tương tự

$$
\sum_{n=1}^{\infty} \frac{\sin (3 n x)}{n!}=e^{\cos x} \sin (\sin 3 x)
$$

Suy ra

$$
f(x)=\frac{3}{4} e^{\cos x} \sin (\sin x)-\frac{1}{4} e^{\cos 3 x} \sin (\sin 3 x)
$$

MộT SỐ BÀI TẬP HỖN HỢP

Bài 1

1) Cho dāy $\left\{\mathrm{u}_{\mathrm{n}}\right\}, \mathrm{n} \geq 1$ định nghīa bởi hệ thức truy hồi

$$
u_{n+1}=u_{n}-2 u_{n}^{3}
$$

với u_{1} cho trước và thoả $0<\mathrm{u}_{1}<\frac{1}{\sqrt{2}}$.
Chứng minh rà̀ng $0<\mathrm{u}_{\mathrm{n}}<\frac{1}{\sqrt{2}}, \forall \mathrm{n} \geq 1$.
Chứng minh rằng dãy $\left\{\mathrm{u}_{\mathrm{n}}\right\}, \mathrm{n} \geq 1$ hội tụ và tìm giới hạn của dãy đó.
2) Xét dāy $\left\{\mathrm{v}_{\mathrm{n}}\right\}, \mathrm{n} \geq 1$ dịnh nghīa bởi

$$
v_{n}=\frac{1}{u_{n+1}}-\frac{1}{u_{n}} \text { với } n \geq 1
$$

a) Chứng minh rằng dāy có sớ hạng tổng quát V_{n} :

$$
v_{n}=v_{1}+v_{2}+\ldots+v_{n}
$$

dần tới $+\infty$.
b) Chứng minh rằng $v_{n} \leq \frac{2}{1-2 u_{1}^{2}} u_{n}$ và suy ra dáng điệu của dãy có số hạng tổng quát

$$
S_{n}=u_{1}+u_{2}+\ldots+u_{n}
$$

3) Chứng minh rà̀ng dāy $\left\{w_{n}\right\}, n \geq 1$ định nghīa bởi :

$$
\mathrm{w}_{\mathrm{n}}=\frac{1}{\mathbf{u}_{\mathrm{n}+1}^{2}}-\frac{1}{\mathbf{u}_{\mathrm{n}}^{2}} \text { họi tụ đến } 4 .
$$

4) a) Chứng minh rằng nếu một dāy $\left\{a_{n}\right\} ; n \geq 1$ hội tụ đến l thì dāy $\left\{b_{n}\right\}, n \geq 1$ định nghĩa bởi

$$
b_{n}=\frac{1}{n}\left(a_{1}+a_{2}+\ldots+a_{n}\right)
$$

cùng hội tụ đến l;
b) Suy ra

$$
\lim _{n \rightarrow \infty} 2 \sqrt{n} u_{n}=1 \text { (nghĩa là } u_{n} \sim \frac{1}{2 \sqrt{n}} \text {). }
$$

Bài 2

Cho $\mathrm{x} \mapsto \mathrm{g}(\mathrm{x})$ là một hàm số lẻ, xác định và 4 lần khả vi trên khoảng [-a, a] với $\mathrm{a}>0$, cố định.

1) Xét tính chã̃n, lẻ của $\mathrm{g}^{\prime}, \mathrm{g}^{\prime \prime}, \mathrm{g}^{(3)}, \mathrm{g}^{(4)}$ và tính các giá trị $\mathrm{g}(0)$; $\mathrm{g}^{\prime \prime}(0) ; \mathrm{g}^{(4)}(0)$?
2) Chứng minh rằng tồn tại một số $\mathrm{c}, 0<\mathrm{c}<\mathrm{a}$ sao cho

$$
g(a)=\frac{a}{3}\left[g^{\prime}(a)+2 g^{\prime}(0)\right]-\frac{a^{4}}{72} g^{(4)}(c)
$$

Gợi ý : có thể xét hàm phụ :

$$
\varphi(x)=g(x)-\frac{x}{3}\left[g^{\prime}(x)+2 g^{\prime}(0)\right]+\frac{x^{4}}{72} A
$$

với A là một hằng số được chọn sao cho $\varphi(\mathrm{a})=0$, rồi tính φ^{\prime}, $\varphi^{\prime \prime}, \varphi^{(3)}$.

Bài 3

1) Viết khai triển hữu hạn đến bậc 3 , khi $\mathrm{x} \rightarrow 0$ của biểu thức $e^{x} \operatorname{tg} x$.
2) Xét hàm s б $\mathrm{f}(\mathrm{x})$ xác định trên $\mathrm{I}:=\left(-\frac{\pi}{2},+\frac{\pi}{2}\right)$ với $\mathrm{f}(\mathrm{x})=\mathrm{e}^{\mathrm{x}} \operatorname{tgx}$.

Chứng minh rằng trên I , f khả vi vô hạn lần và $\mathrm{f}^{\prime}(\mathrm{x})>0, \forall \mathrm{x} \in \mathrm{I}$.

Suy ra f có hàm ngược $\mathrm{g}: \mathrm{t} \mapsto \mathrm{x}=\mathrm{g}(\mathrm{t})$ khả vi vô hạn lần trên \mathbf{R} và có khai triển hữu hạn ở mọi bậc khi $t \rightarrow 0$. Viết khai triển hữu hạn của g đến bậc 3 (dù̀ng hệ thức $f(g(t))=t)$.
3) Cho $n \in N$, chứng minh rằng trong khoảng $\left(n \pi-\frac{\pi}{2}, n \pi+\frac{\pi}{2}\right)$ phương trình $\mathrm{e}^{\mathrm{x}} \mathrm{tgx}=1$ chỉ có một nghiệm và kí hiệu nghiệm đó là $\mathrm{n} \pi+\alpha_{\mathrm{n}}$. Biểu diễn α_{n} theo hàm số g đã định nghĩa ở trên.

Chứng minh rằng $\alpha_{n} \sim \mathrm{e}^{-n \pi}$ khi $n \rightarrow+\infty$.
Đặt $\beta_{n}:=e^{2 n \pi}\left(\alpha_{n}-e^{-n \pi}\right)$; chứng minh rằng β_{n} có giới hạn hĩ̛̛u hạn l và tìm l; viết một biểu thức tương đưỡng với $\beta_{\mathrm{n}}-l$.
4) Tổng quát hơn, cho $\mathrm{f}(\mathrm{x})$ là một hàm số khả vi vô hạn lần trên một khoàng $\mathrm{J}:=[\mathrm{a}, \mathrm{b}], \mathrm{a}<0<\mathrm{b}$ sao cho $\mathrm{f}(0)=0 ; \mathrm{f}^{\prime}(0) \neq 0$.
Chứng minh rằng trên một khoảng $K:=(\alpha, \beta), \alpha<0<\beta$ nào đó, f có một hàm ngược g và g cūng có khai triển hữu hạn ở mọi bậc tại lân cậ̣n 0 . Hãy néu cách xác định khai triển hữu hạn đến bậc n của $g(t)$ khi biết khai triển hữu hạn của $f(x)$ cũng ở bậc n.

Bài 4

Xét hàm số $\mathrm{f}(\mathrm{x}):=\ln \left(1-2 \mathrm{acos} \mathrm{x}+\mathrm{a}^{2}\right)$
trong đó a là một số thực cho trước sao cho $|\mathrm{a}| \neq 1$.

1) a) Xét sự biến thiên của hàm số f.
b) Tìm một cận trên và cận dưới của tích phân :

$$
g(a):=\int_{0}^{\pi} f(x) d x
$$

suy ra:

$$
\lim _{a \rightarrow 0} g(a)=0
$$

2) a) Chứng minh các hệ thức

$$
g(a)=g(-a) ; \int_{0}^{2 \pi} f(x) d x=2 g(a) ; g(a)=\frac{1}{2} g\left(a^{2}\right)
$$

b) Chứng minh rằng nếu $|\mathrm{a}|<1$ thì $g(\mathrm{a})=0$.
c) Tính g(a) khi $|a|>1$.
3) Giả sử $a>0$.
a) Chứng minh rằng với mọi $\mathrm{x} \in \mathbf{R}:\left|\mathrm{a}-\mathrm{e}^{\mathrm{ix}}\right|^{2}=\mathrm{e}^{\mathrm{f}(\mathrm{x})}$.
b) $Đ$ ạt $P_{n}:=\prod_{k=0}^{n-1}\left(1-2 a \cos \frac{2 k \pi}{n}+a^{2}\right)$.

Chứng minh rằng $P_{n}=\left|a^{n}-1\right|^{2}$.
c) $\operatorname{Tim} \lim _{n \rightarrow \infty}\left(\frac{1}{n} \ln P_{n}\right)$.
d) Suy ra, với $a \neq 1$, giá trị của tích phấn

$$
\int_{0}^{2 \pi} \ln \left(1-2 a \cos x+a^{2}\right) d x .
$$

Bài 5

1) Cho hai chuỗi số dương $\sum_{n=1}^{\infty} u_{n}, \sum_{n=1}^{\infty} v_{n}$. Giả sử tồn tại một só
nguyên dương n_{o} sao cho ta có

$$
\frac{u_{n+1}}{u_{n}} \leq \frac{v_{n+1}}{v_{n}} \quad \forall n \geq n_{0}
$$

Chứng minh rằng nếu chuỗi số $\sum_{n=1}^{\infty} v_{n}$ hội tụ thì chuỗi sớ $\sum_{n=1}^{\infty} u_{n}$ hội
tụ, còn nếu chuỗi số $\sum_{n=1}^{\infty} u_{n}$ phân kì thì chuỗi số $\sum_{n=1}^{\infty} v_{n}$ phân kì.
27.0.0.1 dq4wnloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
2) Cho chuổi số dương $\sum_{\mathrm{n}=1}^{\infty} \mathrm{u}_{\mathrm{n}}$. Giả sử rằng khi $\mathrm{n} \rightarrow \infty$

$$
\frac{u_{n+1}}{u_{n}}=1-\frac{a}{n}+o\left(\frac{1}{n}\right),
$$

trong đó $\mathrm{a} \in \mathbf{R}$. Bà̀ng cách so sánh với chuôi số $\sum_{n=1}^{\infty} \mathrm{v}_{\mathrm{n}}$, trong đó $v_{n}=\frac{1}{n^{\alpha}}, \alpha>0$, hãy chứng minh rầng chuôi i số $\sum_{n=1}^{\infty} u_{n}$ hội tụ nếu $\mathrm{a}>1$, phân kì nếu $\mathrm{a}<1$ (quy tắc Duhamel).
3) Cho chuôi sớ dương $\sum_{n=1}^{\infty} u_{n}$. Giả sử rà̀ng khi $n \rightarrow \infty$

$$
\frac{u_{n+1}}{u_{n}}=1-\frac{a}{n}+\frac{b}{n^{2}}+o\left(\frac{1}{n^{2}}\right),
$$

trong đó $a \in \mathbf{R}, \mathrm{~b} \in \mathbf{R}$. Bằng cách so sánh với chuỗi số $\sum_{\mathrm{n}=1}^{\infty} \mathrm{v}_{\mathrm{n}}$, trong đó $v_{n}=\frac{1}{n+c}, c \in R$, hãy chứng minh rằng chuōi só $\sum_{n=1}^{\infty} u_{n}$ hội tụ nếu $\mathrm{a}>1$, phân kì nếu $\mathrm{a} \leq 1$. (Quy tắc Gauss).
4) Khảo sát sự hội tụ của các chuôi số có só hạng tổng quát u_{n} sau :
a) $u_{n}=\left(\frac{1.4 .7 \ldots(3 n-2)}{3.6 .9 \ldots(3 n)}\right)^{2}$
b) $u_{n}=(-1)^{n} \frac{\alpha(\alpha-1) \ldots(\alpha-n+1)}{n!}, \alpha \in R \backslash N$
c) $u_{n}=\left(\frac{1 \cdot 3 \cdot 5 \ldots(2 n-1)}{2 \cdot 4 \cdot 6 \ldots 2 n}\right)^{2}$.

Bài 6

1) Chứng minh rằng với $|t|<1, x \in R$ ta có

$$
\begin{equation*}
\operatorname{arctg} \frac{t \sin x}{1-t \cos x}=\sum_{n=1}^{\infty} \frac{t^{n}}{n} \sin n x \tag{}
\end{equation*}
$$

Tính

$$
I_{n}=\int_{0}^{\pi} \operatorname{arctg} \frac{t \sin x}{1-t \cos x} \sin n x d x
$$

với n nguyên dương, $|\mathbf{t}|<1$.
2) Hệ thức (${ }^{*}$) có còn đúng khi $|t|=1$ không ? Gọi $f(x)$ là hàm sớ tuần hoàn chu kì 2π xác định bời

$$
f(x)=\sum_{n=1}^{\infty} \frac{\sin n x}{n}
$$

Tìm biểu thức của $\mathrm{f}(\mathrm{x})$ khi $0<\mathrm{x}<2 \pi$. Chứng minh rà̀ng chuôi hàm số trên không hội tụ đều trên R, cũng không hội tụ tuyệt đói trừ tại $x=k \pi, k \in Z$, nhưng hội tụ đều trên đoạn [$\delta, 2 \pi-\delta$] với $0<\delta<\pi$. Bằng tính toán trực tiếp hã̃y khai triển hàm số $\mathrm{f}(\mathrm{x})$ thành chuōi Fourier.
3) Giả sử

$$
\mathrm{S}_{\mathrm{n}}(\mathrm{x})=\sum_{\mathrm{k}=1}^{\mathrm{n}} \frac{\sin \mathrm{kx}}{\mathrm{k}} \text { với } \mathrm{x} \in(0, \pi)
$$

Tìm nghiệm dương nhỏ nhất x_{n} của phương trình

$$
S_{n}^{\prime}(x)=0
$$

Chứng tỏ rằng x_{n} là điểm cực đại của $\mathrm{S}_{\mathrm{n}}(\mathrm{x})$.
4) Tính tổng của các chuồi Fourier
a) $f_{2}(x)=\sum_{n=1}^{\infty} \frac{\cos n x}{n^{2}}$
b) $f_{3}(x)=\sum_{n=1}^{\infty} \frac{\sin n x}{n^{3}}$
c) $f_{4}(x)=\sum_{n=1}^{\infty} \frac{\cos n x}{n^{4}}$.

LỜI GIẢI

Bài 1

1) Với $\mathrm{n}=1$, hệ thức truy hồi cho :

$$
u_{2}=u_{1}-2 u_{1}^{3}=u_{1}\left(1-2 u_{1}^{2}\right)
$$

Vì $0<u_{1}<\frac{1}{\sqrt{2}}$, suy ra $0<1-2 u_{1}^{2}<1$, do dó :

$$
0<u_{2}<u_{1}<\frac{1}{\sqrt{2}}
$$

Bằng lập luận quy nạp và giả sử $0<\mathrm{u}_{\mathrm{n}}<\frac{1}{\sqrt{2}}, \mathrm{n} \geq 1$ ta có

$$
\begin{aligned}
& 0<u_{n}^{2}<\frac{1}{2} ; 0<1-2 u_{n}^{2}<1 \text { và } \\
& 0<u_{n+1}=u_{n}\left(1-2 u_{n}^{2}\right)<u_{n}<\frac{1}{\sqrt{2}}
\end{aligned}
$$

Vậy dãy $\left\{\mathrm{u}_{\mathrm{n}}\right\}$ giảm, bị chặn dưới bởi số 0 và bị chạan trên bởi $\frac{1}{\sqrt{2}}$, do đó $\left\{u_{n}\right\}$ hợi tụ và

$$
\lim _{\mathrm{n} \rightarrow \infty} \mathrm{u}_{\mathrm{n}}=l \text {, vơi } l \in\left[0, \frac{1}{\sqrt{2}}\right) .
$$

Mặt khác, hàm số $f(x)=x-2 x^{3}$ liên tục, và hệ thức truy hồi cho khi $n \rightarrow \infty$:

$$
l=l-2 l^{3} \text { suy ra } l=0
$$

2) a) $V_{n}=\frac{1}{u_{2}}-\frac{1}{u_{1}}+\frac{1}{u_{3}}-\frac{1}{u_{2}}+\cdots+\frac{1}{u_{n}}-\frac{1}{u_{n-1}}+\frac{1}{u_{n+1}}-\frac{1}{u_{n}}$

$$
V_{n}=\frac{1}{u_{n+1}}-\frac{1}{u_{1}}
$$

Khi $n \rightarrow+\infty, u_{n+1} \rightarrow 0^{+}, \frac{1}{u_{n+1}} \rightarrow+\infty$ và

$$
V_{n}=v_{1}+v_{2}+\ldots+v_{n} \rightarrow+\infty .
$$

b) $v_{n}=\frac{1}{u_{n}-2 u_{n}^{3}}-\frac{1}{u_{n}}=\frac{1-\left(1-2 u_{n}^{2}\right)}{u_{n}\left(1-2 u_{n}^{2}\right)}=\frac{2 u_{n}}{1-2 u_{n}^{2}}$;
vì $u_{n} \neq 0$.
Như đā biết $0<u_{n}<u_{1}$, suy ra :

$$
0<u_{n}^{2}<u_{1}^{2},-u_{1}^{2}<-u_{n}^{2}, 1-2 u_{n}^{2}>1-2 u_{1}^{2} .
$$

Vạy : $0<\frac{1}{1-2 u_{n}^{2}}<\frac{1}{1-2 u_{1}^{2}}$ và $0<v_{n}<\frac{2}{1-2 u_{1}^{2}} u_{n}$.
Suy ra

$$
\mathrm{u}_{\mathrm{n}}>\mathrm{kv}_{\mathrm{n}} \text {, với } \mathrm{k}=\frac{1-2 \mathrm{u}_{1}^{2}}{2}>0
$$

Vậy :

$$
S_{n}=u_{1}+u_{2}+\ldots+u_{n}>k V_{n} \text {, với } V_{n} \rightarrow+\infty .
$$

Do đó

$$
\lim _{n \rightarrow+\infty} S_{n}=+\infty .
$$

3) $w_{n}=\frac{u_{n}^{2}-u_{n+1}^{2}}{u_{n}^{2} u_{n+1}^{2}}=\frac{u_{n}^{2}-u_{n}^{2}\left(1-2 u_{n}^{2}\right)^{2}}{u_{n}^{2}\left(1-2 u_{n}^{2}\right)^{2}}=\frac{4\left(1-u_{n}^{2}\right)}{\left(1-2 u_{n}^{2}\right)^{2}}$

Khi $n \rightarrow+\infty ; u_{n} \rightarrow 0$ do dó

$$
\lim _{n \rightarrow \infty} w_{n}=4
$$

4) a) Theo giả thiết $\lim _{n \rightarrow \infty} a_{n}=l$ nên có thể đặt $a_{n}=l+\alpha_{n}$; với $\alpha_{\mathrm{n}} \rightarrow 0$ khi $\mathrm{n} \rightarrow \infty$. Khi đó: $\mathrm{b}_{\mathrm{n}}=l+\frac{1}{\mathrm{n}} \sum_{\mathrm{k}=1}^{\mathrm{n}} \alpha_{\mathrm{k}} ;$ vì $\alpha_{\mathrm{n}} \rightarrow 0$ nên dé chứng minh điều khẳng định của mệnh đề chỉ cần chứng minh $\frac{1}{n} \sum_{k=1}^{n} \alpha_{k} \rightarrow 0$.

Thật vặy, với $n \geq n_{0}+1$, ta có

$$
\begin{gathered}
S_{n}=\frac{1}{n} \sum_{k=1}^{n} \alpha_{k}=\frac{1}{n} \sum_{k=1}^{n_{0}} \alpha_{k}+\frac{i}{n} \sum_{k=n_{0}+1}^{n} \alpha_{k} \\
\left|S_{n}\right| \leq \frac{1}{n} \sum_{k=1}^{n}\left|\alpha_{k}\right|+\frac{1}{n} \sum_{k=n_{0}+1}^{n}\left|\alpha_{k}\right|
\end{gathered}
$$

$\forall \varepsilon>0, \exists n_{\mathrm{o}}$ sao cho $\mathrm{n} \geq \mathrm{n}_{\mathrm{o}} \Rightarrow\left|\alpha_{\mathrm{k}}\right|<\frac{\varepsilon}{2}$, suy ra

$$
\frac{1}{n_{k}} \sum_{n_{0}+1}^{n}\left|\alpha_{k}\right|<\frac{n-n_{0}}{n} \cdot \frac{\varepsilon}{2}<\frac{\varepsilon}{2}
$$

và $\exists n_{1}$ sao cho $n \geq n_{1} \Rightarrow \frac{1}{n} \sum_{k=1}^{n_{0}}\left|\alpha_{k}\right|<\frac{\varepsilon}{2}$, với n_{0} có định.
Vậy, với $n \geq n_{2}=\max \left(n_{0}, n_{1}\right) \Rightarrow\left|S_{n}\right|<\varepsilon$ do đó $S_{n} \rightarrow 0$ và :

$$
\mathrm{a}_{\mathrm{n}} \rightarrow l \Rightarrow \mathrm{~b}_{\mathrm{n}}=\frac{1}{\mathrm{n}} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{k}} \rightarrow l
$$

b) Áp dụng kết quả a) vào dãy $w_{n}:$ vì $w_{n} \rightarrow 4$

$$
z_{n}=\frac{1}{n}\left(w_{1}+w_{2}+\ldots+w_{n}\right)=\frac{1}{n}\left(\frac{1}{u_{n+1}^{2}}-\frac{1}{u_{1}^{2}}\right) \rightarrow 4
$$

Vì $u_{n+1}^{2} \rightarrow 0^{+}$và $\frac{1}{u_{n+1}^{2}}-\frac{1}{u_{1}^{2}} \sim \frac{1}{u_{n+1}^{2}}$ khi $n \rightarrow+\infty$ nên :

$$
\begin{gathered}
n u_{n+1}^{2} \sim \frac{1}{4}, u_{n+1}^{2} \sim \frac{1}{4 n} \sim \frac{1}{4(n+1)}, \text { hay } \\
u_{n}^{2} \sim \frac{1}{4 n} .
\end{gathered}
$$

Vì $u_{n}>0$, suy ra:

$$
\mathrm{u}_{\mathrm{n}} \sim \frac{1}{2 \sqrt{\mathrm{n}}}, \mathrm{n} \rightarrow+\infty
$$

Bài 2

1) $g(-x)=-g(x) \Rightarrow-g^{\prime}(-x)=-g^{\prime}(x), g^{\prime}(-x)=g^{\prime}(x)$

Vậy g' là hàm số chẫn.
Cūng vậy :

$$
-g^{\prime \prime}(-x)=g^{\prime \prime}(x) \Rightarrow g^{\prime \prime} \text { là hàm só lé. }
$$

Tương tự : $\mathrm{g}^{(3)}$ chẫn và $\mathrm{g}^{(4)}$ lẻ.
Từ biểu thức $g(-x)=-g(x)$, với $x=0$ suy ra

$$
g(0)=-g(0), \text { vậy } g(0)=0 .
$$

Tương tự : $\mathrm{g}^{\prime \prime}(0)=0$ và $\mathrm{g}^{(4)}(0)=0$.
2) Gọi $\varphi(x):=g(x)-\frac{x}{3}\left[g^{\prime}(x)+2 g^{\prime}(0)\right]+\frac{x^{4}}{72} A$
trong đó A là hằng số được chọn một cách duy nhất sao cho $\varphi(\mathrm{a})=0$, phương trình (với ẫn A) :

$$
\begin{equation*}
g(a)-\frac{a}{3}\left[g^{\prime}(a)+2 g^{\prime}(0)\right]+\frac{a^{4}}{72} A=0 \tag{1}
\end{equation*}
$$

có nghiệm duy nhắt vì $\frac{\mathrm{a}^{4}}{72} \neq 0$.

Với A đã được chọn, ta tính các đạo hàm :

$$
\begin{aligned}
\varphi^{\prime}(x) & =g^{\prime}(x)-\frac{1}{3}\left[g^{\prime}(x)+2 g^{\prime}(0)\right]-\frac{x}{3} g^{\prime \prime}(x)+\frac{x^{3}}{18} A \\
& =\frac{2}{3}\left[g^{\prime}(x)-g^{\prime}(0)\right]-\frac{x}{3} g^{\prime \prime}(x)+\frac{x^{3}}{18} A . \\
\varphi^{\prime \prime}(x) & =\frac{2}{3} g^{\prime \prime}(x)-\frac{1}{3} g^{\prime \prime}(x)-\frac{x}{3} g^{(3)}(x)+\frac{x^{2}}{6} A \\
& =\frac{1}{3}\left[g^{\prime \prime}(x)-x g^{(3)}(x)\right]+\frac{x^{2}}{6} A . \\
\varphi^{(3)}(x) & =\frac{1}{3}\left[g^{(3)}(x)-g^{(3)}(x)-x g^{(4)}(x)\right]+\frac{x}{3} A \\
& =\frac{x}{3}\left[A-g^{(4)}(x)\right] .
\end{aligned}
$$

Dē thấy rằng:
$\varphi(0)=\varphi^{\prime}(0)=\varphi^{\prime \prime}(0)=0$. Áp dụng công thức Taylor đến bậc 3 , đới với hàm số φ trên khoảng [$0, \mathrm{a}$] được :

$$
\varphi(a)=\varphi(0)+a \varphi^{\prime}(0)+\frac{a^{2}}{2} \varphi^{\prime \prime}(0)+\frac{a^{3}}{6} \varphi^{(3)}(c)
$$

với $c \in(0, a)$.
Suy ra

$$
0=\frac{a^{3}}{6} \cdot \frac{c}{3}\left[A-g^{(4)}(c)\right]
$$

Vì $a \neq 0 ; c \neq 0$ suy ra $A=g^{(4)}(c)$.
Thế biểu thức A bởi $\mathrm{g}^{(4)}(\mathrm{c})$ vào (1) ta được :

$$
g(a)=\frac{a}{3}\left[g^{\prime}(a)+2 g^{\prime}(0)\right]-\frac{a^{4}}{72} g^{(4)}(c) ; 0<c<a
$$

Bài 3

1) Ta biết rằng khi $x \rightarrow 0$:

$$
\begin{aligned}
& \mathrm{e}^{\mathrm{x}}=1+\mathrm{x}+\frac{\mathrm{x}^{2}}{2}+o\left(\mathrm{x}^{2}\right) \\
& \operatorname{tg} x=\mathrm{x}+\frac{\mathrm{x}^{3}}{3}+o\left(\mathrm{x}^{3}\right) . \text { Do đó : } \\
& \mathrm{e}^{\mathrm{x}} \operatorname{tgx}=\mathrm{x}+\mathrm{x}^{2}+\frac{5 \mathrm{x}^{3}}{6}+o\left(\mathrm{x}^{3}\right)
\end{aligned}
$$

(Chú ý rằng trong khai triển của e^{x} không cần viết sớ hạng x^{3} vì $\mathrm{e}^{\mathrm{x}} \mathrm{tgx}$ là vô cùng bé bậc nhất khi $\mathrm{x} \rightarrow 0$).
2) $f^{\prime}(x)=e^{x} \operatorname{tg} x+e^{x}\left(1+\operatorname{tg}^{2} x\right)>0 \quad \forall x$, vì đa thức $u^{2}+u+1$ luôn dương, do đó f tăng trên $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ (xem bảng dưới đây)

x	$-\frac{\pi}{2}$	0	$\frac{\pi}{2}$		
$\mathrm{f}(\mathrm{x})$	$\\|+0$	$\rightarrow+\infty$	$\\|$		

Vậy f có một hàm ngược g xác định, tăng trên \mathbf{R} và $\mathrm{g}(0)=0$.
Mạ̣t khác, f là tích của hai hàm số khả vi vô hạn lần trên $\mathrm{I}:=\left(-\frac{\pi}{2},+\frac{\pi}{2}\right)$, do đó bản thân f cũng khả vi vô hạn lần trên I .
Ngoài ra, $t=f(x) \Leftrightarrow x=g(t)$ nên ta có $g^{\prime}(t)=\frac{1}{f^{\prime}(x)}$ xác định trên R, vì $f^{\prime}(x)>0$, và :

$$
g^{\prime \prime}(t)=-\frac{f^{\prime \prime}(x)}{f^{\prime 2}(x)}
$$

27.0.0.1 1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012
bản thân $\mathrm{g}^{\prime \prime}$ cũng khả vi v.v..., cứ thế tiếp tục, suy ra $\mathrm{g}(\mathrm{t})$ khả vi vô hạn lần trên \mathbf{R}, do đó có thể khai triển hữu hạn $\mathrm{g}(\mathrm{t})$ đến mọi bậc khi $\mathrm{t} \rightarrow 0$, và dùng cong thức Maclaurin ta dược :

$$
g(t)=g(0)+\operatorname{tg}^{\prime}(0)+\frac{t^{2}}{2!} g^{\prime \prime}(0)+\ldots+\frac{t^{n}}{n!} g^{(n)}(0)+o\left(t^{n}\right)
$$

Vì $g(0)=0, g^{\prime}(0)=\frac{1}{f^{\prime}(0)}=1$ nên khai triển của $g(t)$ có dậng

$$
g(t)=t+a t^{2}+b t^{3}+o\left(t^{3}\right)
$$

Để xác định các hệ số a, b ta có thể dùng công thức của khai triển Maclaurin, tuy nhiên, để đơn giản hơn, ta tận dụng tính duy nhất của khai triển và viết

$$
\begin{aligned}
f(g(t)) & =g(t)+g^{2}(t)+\frac{5}{6} g^{3}(t)+o\left(t^{3}\right) \\
& =t+a t^{2}+b t^{3}+\left(t^{2}+2 a t^{3}\right)+\frac{5}{6} t^{3}+o\left(t^{3}\right) \\
& =t+(a+1) t^{2}+\left(b+2 a+\frac{5}{6}\right) t^{3}+o\left(t^{3}\right)=t .
\end{aligned}
$$

Suy ra (bằng cách cho triệt tiêu các hệ số của t^{2} và t^{3})

$$
a=-1, b=\frac{7}{6}
$$

và cuối cùng được :

$$
\begin{equation*}
g(t)=t-t^{2}+\frac{7}{6} t^{3}+o\left(t^{3}\right) \tag{1}
\end{equation*}
$$

3) α_{n} được định nghĩa từ biểu thức :

$$
\begin{gathered}
\mathrm{e}^{\mathrm{n} \pi+\alpha_{n}} \operatorname{tg} \alpha_{n}=1, \mathrm{e}^{\alpha_{n}} \operatorname{tg} \alpha_{\mathrm{n}}=\mathrm{e}^{-\mathrm{n} \mathrm{\pi}} \text {, vậy } \\
\alpha_{\mathrm{n}}=\mathrm{g}\left(\mathrm{e}^{-\mathrm{n} \pi}\right), \text { vì } \alpha_{\mathrm{n}} \in \mathrm{I} . \text { Khi } \mathrm{n} \rightarrow+\infty, \mathrm{e}^{-\mathrm{n} \pi} \rightarrow 0 \text { và } \alpha_{\mathrm{n}}-\mathrm{e}^{-n \pi}
\end{gathered}
$$

theo (1). Khi đó: $\beta_{n}=e^{2 n \pi}\left(\alpha_{n}-e^{-n \pi}\right)=\frac{1}{t^{2}}[g(t)-t]$,
nếu $\mathrm{t}=\mathrm{e}^{-\mathrm{n} \pi} \rightarrow 0$
$\mathrm{g}(\mathrm{t})-\mathrm{t} \sim-\mathrm{t}^{2}$ (theo (1)) và $\beta_{\mathrm{n}} \rightarrow-1=l$.
27.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

Cuối cùng

$$
\beta_{\mathrm{n}}-l=\beta_{\mathrm{n}}+1=\frac{1}{\mathrm{t}^{2}}\left[\mathrm{~g}(\mathrm{t})-\mathrm{t}+\mathrm{t}^{2}\right]-\frac{1}{\mathrm{t}^{2}} \cdot \frac{7}{6} \mathrm{t}^{3}=\frac{7}{6} \mathrm{t}
$$

Vậy :

$$
\beta_{\mathrm{n}}-l-\frac{7}{6} \mathrm{e}^{-\mathrm{n} \pi}
$$

4) Nếu f khả vi vô hạn lần trên $\mathrm{J}:=(\mathrm{a}, \mathrm{b})$ và $\mathrm{f}^{\prime}(0) \neq 0, \mathrm{f}^{\top}$ liên tục trên I và tồn tại một lân cận của 0 , chẳng hạn $\mathrm{K}:=(\alpha, \beta), \mathrm{a} \leq \alpha<0<\beta \leq b$, sao cho f ' không đổi dấu và cùng dấu với $\mathrm{f}^{\prime}(0)$ trên K , do đó f đơn điệu trên K và có một hàm ngược g .
Cũng lập luận như câu 2), có $g^{\prime}(t)=\frac{1}{f^{\prime}(x)}, g^{\prime \prime}(t)=-\frac{f^{\prime \prime}(x)}{f^{\prime 2}(x)}, v . v \ldots$ suy ra g khả vi vô hạn lần trên $(f(\alpha), f(\beta))$ và vì $f(0)=0 \Rightarrow 0=g(0)$ và g có khai triển hữu hạn ở mọi bậc :

$$
g(t)=b_{1}(t)+b_{2} t^{2}+\ldots+b_{n} t^{n}+o\left(t^{n}\right)
$$

Ta sẽ dùng các hệ số a_{j} của khai triển của f rồi dùng phương pháp đồng nhất hệ số để xác định các hệ số b_{i}, ta có :

$$
\begin{aligned}
f(g(t)) & =a_{1}\left(b_{1} t+b_{2} t^{2}+\ldots+b_{n} t^{n}\right)+a_{2}\left(b_{1}^{2} t^{2}+2 b_{1} b_{2} t^{3}+\ldots\right) \\
& +a_{3}\left(b_{1}^{3} t^{3}+3 b_{1}^{2} b_{2} t^{4}+\ldots\right)+\ldots+a_{n} b_{1}^{n} t^{n}+o\left(t^{n}\right)=t .
\end{aligned}
$$

Từ đó rút ra :

$$
a_{1} b_{1}=1, a_{1} b_{2}+a_{2} b_{1}^{2}=0, a_{1} b_{3}+2 a_{2} b_{1} b_{2}+a_{3} b_{1}^{3}=0 \text { v.v... }
$$

suy ra lần lượt :

$$
b_{1}=\frac{1}{a_{1}}, b_{2}=-\frac{a_{2}}{a_{1}^{3}}, v, v \ldots
$$

Bài 4

1) a) f xác định khi $1-2 a \cos x+a^{2}>0$.

Vì $1-2 a \cos x+a^{2}=(a-\cos x)^{2}+\sin ^{2} x \geq 0$ và biểu thức nảy chỉ triệ̣t tiêu khi $\cos x=a$ và $\sin x=0$, và vì $a \neq \pm 1$ nên điều đó là khồng thể, do vậy miền xác định của f là R .
Vì f chẵn, chu kì 2π nên chỉ cần khảo sát trên [$0, \pi$], ta có :

$$
f^{\prime}(x)=\frac{2 a \sin x}{1-2 a \cos x+a^{2}}
$$

Dấu của $f^{\prime}(x)$ là dấu của a khi $a \neq 0$ và $x \in(0, \pi)$.

$$
f^{\prime}(0)=f^{\prime}(\pi)=0
$$

Với $\mathrm{a}=0, \mathrm{f}(\mathrm{x})=0 \forall \mathrm{x}$.
Với $\mathrm{a} \neq 0$ có 2 bảng biến thiên tuỳ theo dấu của a :
$a>0$

x	0	$\frac{\pi}{2}$	π	
$\mathrm{f}^{\prime}(\mathrm{x})$	0	+		0
$\mathrm{f}(\mathrm{x})$	$2 \ln \|1-\mathrm{a}\| \xrightarrow{\longrightarrow} \ln \left(1+\mathrm{a}^{2}\right) \xrightarrow{\longrightarrow} \ln \|1+\mathrm{a}\|$			

a<0

x	0	$\frac{\pi}{2}$	π
$f^{\prime}(x)$	0	-	0
$f(x)$	$2 \ln \|1-a\| \xrightarrow{\longrightarrow} \ln \left(1+a^{2}\right)^{\longrightarrow}\|1+a\|$		

Muớn có đổ thị đầy đủ của f chỉ cần lấy đới xứng của đồ thị ứng với $[0, \pi]$ qua trục y và tịnh tiến theo trục hoành $2 \mathrm{k} \pi$.
b) Theo bảng biến thiên trên, $f(x)$ gồm giữa $2 \ln |1-a|$ và $2 \ln |1+a|$, vậy $g(a)=\int_{0}^{\pi} f(x) d x \quad$ gồm giữa $2 \pi \ln |1-a| \quad$ và $2 \pi \ln |1+\mathrm{a}|$ và mỗi cận này dần tới 0 khi $\mathrm{a} \rightarrow 0$. Vậy

$$
\lim _{a \rightarrow 0} g(a)=0
$$

2) a) Có

$$
g(-a)=\int_{0}^{\pi} \ln \left(1+2 a \cos x+a^{2}\right) d x
$$

Thực hiện phếp đổi biến $x=\pi-t$, dược

$$
\begin{aligned}
g(-a) & =\int_{\pi}^{0} \ln \left(1-2 a \cos t+a^{2}\right)(-d t)= \\
& =\int_{0}^{\pi} \ln \left(1-2 a \cos t+t^{2}\right) d t=g(a)
\end{aligned}
$$

Ta viết

$$
\int_{0}^{2 \pi} f(x) d x=\int_{0}^{\pi} f(x) d x+\int_{\pi}^{2 \pi} f(x) d x=g(a)+\varphi(a)
$$

với

$$
\varphi(a):=\int_{\pi}^{2 \pi} \ln \left(1-2 a \cos x+a^{2}\right) d x
$$

Thực hiện phép đổi biến $\mathrm{x}=\pi+\mathrm{a}$ ta được

$$
\varphi(a)=\int_{0}^{\pi} \ln \left(1+2 a \cos u+a^{2}\right) d u=g(-a)=g(a)
$$

Suy ra:

$$
\int_{0}^{2 \pi} f(x) d x=2 g(a)
$$

Cuối cùng, so sánh $\mathrm{g}\left(\mathrm{a}^{2}\right)$ và $2 \mathrm{~g}(\mathrm{a})$ có :

$$
g\left(a^{2}\right)=\int_{0}^{\pi} \ln \left(1-2 a^{2} \cos x+a^{4}\right) d x
$$

$$
\begin{aligned}
2 g(a) & =g(a)+g(-a) \\
= & \int_{0}^{\pi} \ln \left[\left(1-2 a \cos x+a^{2}\right)\left(1+2 a \cos x+a^{2}\right)\right] d x \\
& =\int_{0}^{\pi} \ln \left[\left(1+a^{2}\right)^{2}-4 a^{2} \cos ^{2} x\right] d x=\int_{0}^{\pi} \ln \left(1+a^{4}-2 a^{2} \cos 2 x\right) d x \\
& =\int_{0}^{\pi} \ln \left(1+a^{4}-2 a^{2} \cos y\right) d y=g\left(a^{2}\right) \text { với } 2 x=y .
\end{aligned}
$$

Vạy: $g(a)=\frac{1}{2} g\left(\mathrm{a}^{2}\right)$.
b) Với $|a|<1$, ta viết :

$$
g(a)=\frac{1}{2} g\left(a^{2}\right)=\frac{1}{2} \cdot \frac{1}{2} g\left(a^{4}\right)=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} g\left(a^{8}\right), \ldots
$$

Bằng quy nạp dơn giản suy ra :
$g(a)=\frac{1}{2^{n}} g\left(a^{2^{n}}\right) \forall n$. Vì khi $n \rightarrow \infty, 2^{n} \rightarrow+\infty, \frac{1}{2^{n}} \rightarrow 0, a^{2^{n}} \rightarrow 0$ (vì $|a|<1$).

Vậy với $|\mathrm{a}|<1$, có

$$
g(a)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} g\left(a^{2^{n}}\right)=0
$$

c) Với $|a|>1$, đặt $a=\frac{1}{b}$, khi đó $|b|<1$ và

$$
g(a)=\int_{0}^{\pi} \ln \frac{b^{2}-2 b \cos x+1}{b^{2}} d x=g(b)-\int_{0}^{\pi} \ln b^{2} d x=-2 \pi \ln |b|
$$

vì $g(b)=0$, suy ra :

$$
\mathrm{g}(\mathrm{a})=2 \pi \ln |\mathrm{a}| .
$$

3) a) $a-e^{i x}=a-\cos x-i \sin x$

$$
\left|a-e^{i x}\right|^{2}=(a-\cos x)^{2}+\sin ^{2} x=e^{f(x)}
$$

b) $P_{n}=\prod_{k=0}^{n-\frac{1}{2}}\left|a-e^{\left.2 i \frac{k \pi}{n}\right|^{2}}=\prod_{k=0}^{n-1}\right| a-\left.\alpha_{k}\right|^{2}=\left|\prod_{k=0}^{n-1}\left(a-\alpha_{k}\right)\right|^{2}$.

Vì với $k=0,1,2, \ldots, n-1$. câc α_{k} là những căn bậc n của đơn vị, nghĩa là n nghiệm của đa thức $z^{n}-1$, do vậy, bằng $\prod_{k=0}^{n-1}\left(z-\alpha_{k}\right)$ và ta có :

$$
\prod_{k=0}^{n-1}\left(a-\alpha_{k}\right)=a^{n}-1
$$

Vậy

$$
P_{n}=\left|a^{n}-1\right|^{2}
$$

c) Gọi $u_{n}=\frac{1}{n} \ln P_{n}=\frac{2}{n} \ln \left|a^{n}-1\right|$.

Với $|a|<1, a^{n} \rightarrow 0,\left|a^{n}-1\right| \rightarrow 1, \ln \left|a^{n}-1\right| \rightarrow 0, \frac{2}{n} \rightarrow 0$ và $u_{n} \rightarrow 0$.
Với $a>1, a^{n}-1 \rightarrow+\infty, \ln \left(a^{n}-1\right) \rightarrow+\infty$ và u_{n} có dạng vô dịinh ; tuy nhiên $\ln \left(a^{n}-1\right)=\ln a^{n}+\ln \left(1-\frac{1}{a^{n}}\right)$ và

$$
\ln \left(1-\frac{1}{a^{n}}\right) \rightarrow 0 ; \ln \left(a^{n}-1\right)-\ln a^{n}=n \ln a .
$$

Suy ra

$$
\mathrm{u}_{\mathrm{n}} \sim \frac{2}{\mathrm{n}} \mathrm{n} \ln \mathrm{a}=2 \ln \mathrm{a}
$$

và $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{u}_{\mathrm{n}}=2 \ln \mathrm{a}$ với $\mathrm{a}>1$.
d) Nếu ta dùng hệ phân điểm $x_{k}=2 k \cdot \frac{\pi}{n}, k=\overline{0, n-1}$ và chia $[0,2 \pi]$ thành π khoảng nhó bằng nhau, và :

$$
\begin{aligned}
\int_{0}^{2 \pi} f(x) d x & =\lim _{n \rightarrow \infty} \frac{2 \pi}{n} \sum_{k=0}^{n-1} f\left(x_{k}\right) . \\
& =2 \pi \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} \ln \left(1-2 a \cos \frac{2 k \pi}{n}+a^{2}\right) \\
& =2 \pi \lim _{n \rightarrow \infty}\left(\frac{1}{n} \ln P_{n}\right)=2 \pi \lim _{n \rightarrow \infty} u_{n} .
\end{aligned}
$$

(dùng kí hiệu ở câu c).
Vặy, khi

$$
\begin{aligned}
a<1, \int_{0}^{2 \pi} \ln \left(1-2 a \cos x+a^{2}\right) d x=0 \\
a>1, \int_{0}^{2 \pi} \ln \left(1-2 a \cos x+a^{2}\right) d x=4 \pi \ln a .
\end{aligned}
$$

Hiển nhiên, ta thấy lại kết quả ở câu 2).

Bài 5

1) Không giảm tính tổng quát, có thể xem $n_{0}=1$. Ta có

$$
\begin{aligned}
& \frac{\mathbf{u}_{2}}{u_{1}} \leq \frac{v_{2}}{v_{t}} \\
& \frac{\mathbf{u}_{3}}{u_{2}} \leq \frac{v_{3}}{v_{2}} \\
& \cdots \cdots \cdots \ldots \ldots \ldots \ldots \ldots \\
& \frac{u_{n}}{u_{n-1}} \leq \frac{v_{n}}{v_{n-1}}
\end{aligned}
$$

Nhân các bất đẩng thức ấy từng vế một, ta được
$\frac{u_{n}}{u_{1}} \leq \frac{v_{n}}{v_{1}} \Rightarrow u_{n} \leq \frac{u_{1}}{v_{1}} v_{n} \forall n \geq 1$. Do đó nếu $\sum_{n=1}^{\infty} v_{n}$ hội ṭ̣ thì $\sum_{n=1}^{\infty} u_{n}$
hội tụ ; nếu $\sum_{n=1}^{\infty} u_{n}$ phân kì thì $\sum_{n=1}^{\infty} v_{n}$ phân kì.
2) Ta có

$$
\frac{v_{n+1}}{v_{n}}=\left(1+\frac{1}{n}\right)^{-\alpha}
$$

Áp dụng công thức khai triển hữu hạn, ta được :

$$
\frac{\mathrm{v}_{\mathrm{n}+1}}{\mathrm{v}_{\mathrm{n}}}=1-\frac{\alpha}{\mathrm{n}}+\mathrm{o}\left(\frac{1}{\mathrm{n}}\right) \text { khi } \mathrm{n} \rightarrow \infty \text {. }
$$

Do dó

$$
\frac{u_{n+1}}{u_{n}}-\frac{v_{n+1}}{v_{n}}=\frac{\alpha-a}{n}+o\left(\frac{1}{n}\right) \text { khi } n \rightarrow \infty \text {. }
$$

Nếu a>1, ta chọn só α sao cho $1<\alpha<\mathrm{a}$. Khi đó với n đủ lớn ta co $\frac{u_{n+1}}{u_{n}} \leq \frac{v_{n+1}}{v_{n}}$.
Chuối só $\sum_{n=1}^{\infty} v_{n}=\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ họi tụ vì $\alpha>1$. Do đó theo kết quả của
câu 1) chuôi $\sum_{n=1}^{\infty} u_{n}$ hội tụ.
Nếu a <1, ta chọn số α sao cho $\mathrm{a}<\alpha<1$. Khi đó với n đủ lớn

$$
\frac{u_{n+1}}{u_{n}} \geq \frac{v_{n+1}}{v_{n}}
$$

Chuôi số $\sum_{n=1}^{\infty} v_{n}=\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ phân kì vì $\alpha<1$. Do đó theo kết quà của câu 1) chuỗi sớ $\sum_{n=1}^{\infty} u_{n}$ phận kì.
3) Trong câu này chỉ cẩn xét trường hợp $\mathrm{a}=1$. Các trường hợp khác đã được giải quyết bởi quy tắc Duhamel (ở câu 2). Vậy khi $n \rightarrow \infty$, ta có theo giả thiết

$$
\frac{u_{n+1}}{u_{n}}=1-\frac{1}{n}+\frac{b}{n^{2}}+o\left(\frac{1}{n^{2}}\right)
$$

Mặt khác, khi $n \rightarrow \infty$

$$
\begin{aligned}
\frac{v_{n+1}}{v_{n}} & =\left(1+\frac{1}{n+c}\right)^{-1} \\
& =1-\frac{1}{n+c}+\frac{1}{(n+c)^{2}}+o\left(\frac{1}{(n+c)^{2}}\right) \\
& =1-\frac{1}{n}\left(1+\frac{c}{n}\right)^{-1}+\frac{1}{n^{2}}\left(1+\frac{c}{n}\right)^{-2}+o\left(\frac{1}{(n+c)^{2}}\right) \\
& =1-\frac{1}{n}\left[1-\frac{c}{n}+o\left(\frac{1}{n}\right)\right]+\frac{1}{n^{2}}\left[1-\frac{2 c}{n}+o\left(\frac{1}{n}\right)\right]+o\left(\frac{1}{(n+c)^{2}}\right) \\
& =1-\frac{1}{n}+\frac{c+1}{n^{2}}+o\left(\frac{1}{n^{2}}\right) .
\end{aligned}
$$

Do đó khi $\mathrm{n} \rightarrow \infty$

$$
\frac{u_{n+1}}{u_{n}}-\frac{v_{n+1}}{v_{n}}=\frac{b-(c+1)}{n^{2}}+o\left(\frac{1}{n^{2}}\right)
$$

Ta chon c sao cho

$$
b-(c+1)>0 \Leftrightarrow c<b-1 .
$$

Khi đó với n đủ lớn

$$
\frac{u_{n+1}}{u_{n}} \geq \frac{v_{n+1}}{v_{n}}
$$

Chuỗi só $\sum_{n=1}^{\infty} v_{n}=\sum_{n=1}^{\infty} \frac{1}{n+c}$ phân kì, do đó chuỗi sớ $\sum_{n=1}^{\infty} u_{n}$ phân kì.
4) a) $u_{n}=\left(\frac{1 \cdot 4 \cdot 7 \ldots(3 n-2)}{3 \cdot 6 \cdot 9 \ldots(3 n)}\right)^{2}$.

Do đó

$$
\lim _{n \rightarrow \infty} \frac{u_{n+1}}{u_{n}}=\lim _{n \rightarrow \infty}\left(\frac{3 n+1}{3 n+3}\right)^{2}=1
$$

Vậy nếu dùng quy tấc ${ }^{-} \mathrm{D}^{\prime}$ Alembert, ta chưa thể kết luận được gì. Nhưng ta co khi $n \rightarrow \infty$

$$
\frac{u_{n+1}}{u_{n}}=\left(1-\frac{2}{3 n+3}\right)^{2}=\left(1-\frac{2}{3 n}+o\left(\frac{1}{n}\right)\right)^{2}=1-\frac{4}{3 n}+o\left(\frac{1}{n}\right) .
$$

Theo quy tấc Duhamel, vì $\mathrm{a}=\frac{4}{3}>1$, chuồi số $\sum_{n=1}^{\infty} \mathrm{u}_{\mathrm{n}}$ hội tụ.
b) $u_{n}=(-1)^{n} \frac{\alpha(\alpha-1) \ldots(\alpha-n+1)}{n!}$.

Trước hết ta chú ý rà̀ng bất đẩu từ một số hạng nào đó trở đi, dấu của các số hạng của chuōi khơng đởi, vì

$$
\frac{u_{n+1}}{u_{n}}=-\frac{\alpha-n}{n+1}=1-\frac{\alpha+1}{n+1}=1-\frac{\alpha+1}{n}+o\left(\frac{1}{n}\right)
$$

Khi $n \rightarrow \infty$. Theo quy tấc Duhamel, chuỗi số đã cho hội tụ nếu $\alpha+1>1$, tức là $\alpha>0$, phần kì néu $\alpha+1<1$, tức là $\alpha<0$.
c) $u_{n}=\left(\frac{1 \cdot 3 \cdot 5 \ldots(2 n-1)}{2 \cdot 4 \cdot 6 \ldots(2 n)}\right)^{2}$.

Ta có

$$
\begin{aligned}
\frac{u_{n+1}}{u_{n}} & =\left(\frac{2 n+1}{2 n+2}\right)^{2}=\left(1-\frac{1}{2(n+1)}\right)^{2} \\
& =\left(1-\frac{1}{2 n}+o\left(\frac{1}{n}\right)\right)^{2}=1-\frac{1}{n}+o\left(\frac{1}{n}\right) \text { khi } n \rightarrow \infty
\end{aligned}
$$

Trong trường hợp này, quy tắc Duhamel chưa cho ta kết luận được. Ta sẽ tìm khai triển hữu hạn đến cấp 2 của $\frac{u_{n+1}}{u_{n}}$. Ta có

$$
\begin{aligned}
\frac{u_{n+1}}{u_{n}} & =1-\frac{1}{n}\left(1+\frac{1}{n}\right)^{-1}+\frac{1}{4 n^{2}}\left(1+\frac{1}{n}\right)^{-2}+o\left(\frac{1}{n^{2}}\right) \\
& =1-\frac{1}{n}\left(1-\frac{1}{n}+o\left(\frac{1}{n}\right)\right)+\frac{1}{4 n^{2}}\left(1-\frac{2}{n}+o\left(\frac{1}{n}\right)\right)+o\left(\frac{1}{n^{2}}\right) \\
& =1-\frac{1}{n}+\frac{5}{4 n^{2}}+o\left(\frac{1}{n^{2}}\right) .
\end{aligned}
$$

Vậy chuổi số đā cho phán kì theo quy tắc Gauss.

Bài 6

1) Hàm số $t \mapsto F(t)=\operatorname{arctg} \frac{t \sin x}{1-t \cos x}$ có đạo hàm là

$$
\begin{aligned}
F^{\prime}(t) & =\frac{1}{1+\left(\frac{t \sin x}{1-t \cos x}\right)^{2}} \cdot \frac{(1-t \cos x) \sin x+t \sin x \cos x}{(1-t \cos x)^{2}} \\
& =\frac{\sin x}{t^{2}-2 t \cos x+1} .
\end{aligned}
$$

Mẫu số là một tam thức bạ̣c hai dối với t có 2 nghiệm phức liên hợp là $\cos x+i \sin x=e^{i x}$ và $\cos x-i \sin x=e^{-i x}$. Do đó ta có thể phân tích

$$
\begin{aligned}
F^{\prime}(t) & =\frac{\sin x}{\left(t-e^{i x}\right)\left(t-e^{-i x}\right)}=\frac{1}{2 i}\left(\frac{1}{t-e^{i x}}-\frac{1}{t-e^{-i x}}\right) \\
& =-\frac{e^{-i x}}{2 i}\left(\frac{1}{1-t e^{-i x}}\right)+\frac{e^{i x}}{2 i}\left(\frac{1}{1-t e^{i x}}\right) .
\end{aligned}
$$

Nếu $|z|<1$ thì $\frac{1}{1-z}$ là tống của cấp số nhân $\sum_{n=0}^{\infty} z^{n}$. Do đó với $|t|<1$, ta có $\left|t e^{-i x}\right|<1$, $\left|t e^{i x}\right|<1$, vì vậy

$$
\begin{aligned}
F^{\prime}(t) & =-\frac{e^{-i x}}{2 i} \sum_{n=0}^{\infty} t^{n} e^{-i n x}+\frac{e^{i x}}{2 i} \sum_{n=0}^{\infty} t^{n} e^{i n x} \\
& =\frac{1}{2 i} \sum_{n=0}^{\infty} t^{n}\left[e^{j(n+1) x}-e^{-i(n+1) x}\right] \\
& =\sum_{n=0}^{\infty} t^{n} \sin (n+1) x .
\end{aligned}
$$

Bằng cách lấy tích phân theo t từng số hạng vế phải ta được

$$
F(t)=F(0)+\sum_{n=0}^{\infty} \frac{t^{n+1}}{n+1} \sin (n+1) x
$$

Vĭ $F(0)=0$, ta dược

$$
F(t)=\sum_{n=0}^{\infty} \frac{t^{n+1}}{n+1} \sin (n+1) x=\sum_{n=1}^{\infty} \frac{t^{n}}{n} \sin n x .
$$

Hàm só $x \mapsto \operatorname{arctg} \frac{t \sin x}{1-t \cos x}$ là một hàm số tuần hoàn với chu kì 2π, thoả mãn các điều kiện của định lí Dirichlet. Vế phải của công thức (*) chính là chuôi Fourier của hàm sốây. Do đó

$$
\frac{2}{\pi} I_{n}=\frac{t^{n}}{n} \Rightarrow I_{n}=\frac{\pi t^{n}}{2 n}
$$

2) Với $\mathrm{t}=1$, chuō̄i sớ ở vế phải của hệ thức $\left(^{*}\right)$ được viết là $\sum_{n=1}^{\infty} \frac{\sin n x}{n}$, chuỗi ấy hợi tụ vì các hệ số $\frac{1}{n}$ dương, giàm dần tới 0 khi n tãng tới ∞. Tổng $\mathrm{f}(\mathrm{x})$ của chuōi hàm số ấy là giới hạn của

$$
\operatorname{arctg} \frac{t \sin x}{1-t \cos x}
$$

khi $t \rightarrow 1^{-}$.
Với $\mathrm{t}=-\mathrm{I}$, ta được chuỗi

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} \sin n x}{n}=\sum_{n=1}^{\infty} \frac{\sin n(x+\pi)}{n}
$$

Ta lại trở về trường hợp $\mathrm{t}=1$.
Ta có

$$
\begin{aligned}
f(x) & =\lim _{t \rightarrow 1^{-}} \operatorname{arctg} \frac{t \sin x}{1-t \cos x}=\operatorname{arctg} \frac{\sin x}{1-\cos x}= \\
& =\operatorname{arctg} \frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \sin ^{2} \frac{x}{2}}=\operatorname{arctg}\left(\operatorname{cotg} \frac{x}{2}\right)= \\
& =\frac{\pi}{2}-\operatorname{arccotg}\left(\operatorname{cotg} \frac{x}{2}\right)=\frac{\pi}{2}-\frac{x}{2}
\end{aligned}
$$

với điều kiện $0<\frac{x}{2}<\pi$, tức là $0<x<2 \pi$.
Hàm số $\mathrm{f}(\mathrm{x})$ là tởng của chuổi hàm số $\sum_{\mathrm{n}=1}^{\infty} \frac{\sin \mathrm{n} x}{\mathrm{n}}$, tởng $\mathrm{f}(\mathrm{x})$ không liên tục trên \mathbf{R} (xem đồ thị của nó ở hình 32), các só hạng $\frac{\sin n x}{n}$ lại liên tục trên R, vậy chuô̄i hàm só ấy không thể hội tụ đều trên \mathbf{R}.
Chuồi hàm só ấy cūng không hợi tụ tuyệt đới trừ tại $x=k \pi$ vì $\left|\frac{\sin n x}{n}\right| \geq \frac{\sin ^{2} n x}{n}=\frac{1-\cos 2 n x}{2 n}$, mà chuồi $\sum_{n=1}^{\infty} \frac{1}{2 n}$ phân kì, còn
27.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012 265
chuỗi $\sum_{n=1}^{\infty} \frac{\cos 2 n x}{2 n}$ hội tụ với $x \neq k \pi$ (vì hệ só $\frac{1}{2 n}$ của nó giàm dần tới 0 khi n tăng dần tới ∞), vì vậy chuō̃i $\sum_{n=1}^{\infty}\left|\frac{\sin n x}{n}\right|$ phân kì.

Hinh 32
Ta áp dụng tiêu chuẩn Cauchy về hội tụ đều để chứng minh rằng chuỗi $\sum_{n=1}^{\infty} \frac{\sin n x}{n}$ hợi tụ đều trên đoạn $[\sigma, 2 \pi-\sigma]$ với $\sigma \in(0, \pi)$.
Giả sử p, q là hai số nguyên sao cho $0<\mathrm{p}<\mathrm{q}$. Ta có

$$
\begin{aligned}
& 2 \sin \frac{x}{2} \sum_{n=p}^{q} \frac{\sin n x}{n}=\sum_{n=p}^{q} \frac{2 \sin \frac{x}{2} \sin n x}{n}= \\
= & \sum_{n=p}^{q} \frac{1}{n}\left[\cos \left(n-\frac{1}{2}\right) x-\cos \left(n+\frac{1}{2}\right) x\right]= \\
= & \frac{1}{p} \cos \left(p-\frac{1}{2}\right) x-\frac{1}{q} \cos \left(q+\frac{1}{2}\right) x+\sum_{n=p+1}^{q}\left(\frac{1}{n}-\frac{1}{n-1}\right) \cos \left(n-\frac{1}{2}\right) x
\end{aligned}
$$

Do đó ta có $\forall \mathrm{x} \in[\sigma, 2 \pi-\sigma]$

$$
\left|\sum_{n=p}^{q} \frac{\sin n x}{n}\right| \leq \frac{1}{2 \sin \frac{\sigma}{2}}\left[\frac{1}{p}+\frac{1}{q}+\sum_{n=p+1}^{q}\left|\frac{1}{n}-\frac{1}{n-1}\right|\right]
$$

Nhưng dãy số $\left(\frac{1}{n}\right)$ giảm dần tới 0 nến $\sum_{n=p+1}^{q}\left|\frac{1}{n}-\frac{1}{n-1}\right|=\frac{1}{p}-\frac{1}{q}$. Vì vậy $\left|\sum_{n=p}^{q} \frac{\sin n x}{n}\right| \leq \frac{1}{p \sin \frac{\sigma}{2}} \forall x \in[\sigma, 2 \pi-\sigma]$. Với mọi só́ $\varepsilon>0$ cho trước, nếu chọn $n_{0}>\frac{1}{\varepsilon \sin \frac{\sigma}{2}}$, ta được

$$
\left|\sum_{n=p}^{q} \frac{\sin n x}{n}\right|<\varepsilon \quad \forall n \geq n_{0}, \forall x \in[\sigma, 2 \pi-\sigma] .
$$

Hàm số $\mathrm{f}(\mathrm{x})$ tuần hoàn có chu kì 2π, bằng $\frac{\pi-\mathrm{x}}{2}$ trong khoảng $(0,2 \pi)$ nên có thể khai triển được thành chuối Fourier. vì $\mathrm{f}(\mathrm{x})$ lé, nên

$$
\begin{aligned}
& a_{n}=0, n=0,1,2, \ldots \\
& b_{n}=\frac{2}{\pi} \int_{0}^{\pi} \frac{\pi-x}{2} \sin n x d x, n=1,2, \ldots
\end{aligned}
$$

Bằng phương pháp tích phân từng phần, ta được

$$
b_{n}=\frac{1}{\pi}\left[-\left.(\pi-x) \frac{\cos n x}{n}\right|_{0} ^{\pi}-\frac{1}{n} \int_{0}^{\pi} \cos n x d x\right]=\frac{1}{n}
$$

Do đó ta được kết quả đā biết

$$
f(x)=\sum_{n=1}^{\infty} \frac{\sin n x}{n}
$$

3) Ta có

$$
S_{n}^{\prime}(x)=\sum_{k=1}^{n} \cos k x=\operatorname{Re}\left(\sum_{k=1}^{n} e^{i k x}\right)=
$$

$$
=\operatorname{Re}\left(e^{i x} \frac{e^{i n x}-1}{e^{i x}-1}\right)=\operatorname{Re}\left(\frac{e^{\left(n+\frac{1}{2}\right) x}-e^{i \frac{x}{2}}}{e^{\frac{i x}{2}}-e^{-\frac{i x}{2}}}\right)
$$

Nhưng

$$
\begin{gathered}
e^{i\left(n+\frac{1}{2}\right) x}-e^{i \frac{x}{2}=\cos \left(n+\frac{1}{2}\right) x-\cos \frac{x}{2}+i\left[\sin \left(n+\frac{1}{2}\right) x-\sin \frac{x}{2}\right]} \\
e^{\frac{i x}{2}-e^{-\frac{i x}{2}}=2 i \sin \frac{x}{2}}
\end{gathered}
$$

Do đó

$$
S_{n}^{\prime}(x)=\frac{\sin \left(n+\frac{1}{2}\right) x-\sin \frac{x}{2}}{2 \sin \frac{x}{2}}=\frac{\sin \frac{n x}{2} \cos (n+1) \frac{x}{2}}{\sin \frac{x}{2}}
$$

Vì vạ̣y $S_{n}^{\prime}(x)=0$ khi

$$
\frac{\mathrm{nx}}{2}=\mathrm{k} \pi, \text { tức lả } \mathrm{x}=\frac{2 \mathrm{k} \pi}{\mathrm{n}}
$$

hoạcc $(n+1) \frac{x}{2}=(2 k+1) \frac{\pi}{2}$, tức là $x=\frac{(2 k+1) \pi}{n+1}$. Nghiệm dương nhỏ nhất của phương trình $S_{n}^{\prime}(x)=0$ là $x_{n}=\frac{\pi}{n+1}$.

Ta có $\mathrm{S}_{\mathrm{n}}(0)=0, \mathrm{~S}_{\mathrm{n}}(\mathrm{x})>0 \forall \mathrm{x} \in\left(0, \frac{\pi}{\mathrm{n}}\right)$ vì khi dó tất cả các số hạng $\frac{\sin \mathrm{kx}}{\mathrm{k}}$ đều dương. Vì vậy x_{n} lả điển cực đại của $\mathrm{S}_{\mathrm{n}}(\mathrm{x})$.
4) Ta đã thấy rằng chuōí Fourier

$$
f(x)=\sum_{n=1}^{\infty} \frac{\sin n x}{n}
$$

hội tụ đều trên mọi đoạn $[\sigma, 2 \pi-\sigma]$ với $\sigma \in(0, \pi)$ và hội tụ tại $\mathrm{x}=0$. Vì vậy ta có thể lấy tích phân từng số hạng chuổi hàm sơ áy từ 0 đến x với $x \in(0,2 \pi)$. Ta được

Do đọ

$$
\begin{gathered}
\int_{0}^{x} \frac{\pi-x}{2} d x=\sum_{n=1}^{\infty} \int_{0}^{x} \frac{\sin n x}{n} d x=-\left.\sum_{n=1}^{\infty} \frac{\cos n x}{n^{2}}\right|_{0} ^{x} . \\
\frac{\pi x}{2}-\frac{x^{2}}{4}=-\sum_{n=1}^{\infty} \frac{\cos n x}{n^{2}}+\sum_{n=1}^{\infty} \frac{1}{n^{2}}
\end{gathered}
$$

Nhưng $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$ (xem bài tập 23 chương 8 hoậc dùng đẳng thức Parveval), ta được

$$
f_{2}(x)=\sum_{n=1}^{\infty} \frac{\cos n x}{n^{2}}=\frac{x^{2}}{4}-\frac{\pi x}{2}+\frac{\pi^{2}}{6}
$$

Dẽ̃ dàng chứng minh rằng chuỗi $\sum_{n=1}^{\infty} \frac{\cos n x}{n^{2}}$ hội tụ đều trên R, vì vạ̀y có thể lấy tích phân từng số hạng chuỗi hàm số ấy. Ta được

$$
\int_{0}^{x} f_{2}(x) d x=\int_{0}^{x}\left(\frac{x^{2}}{4}-\frac{\pi x}{2}+\frac{\pi^{2}}{6}\right) d x=\sum_{n=1}^{\infty} \int_{0}^{x} \frac{\cos n x}{n^{2}} d x
$$

hay

$$
\frac{x^{3}}{12}-\pi \frac{x^{2}}{4}+\frac{\pi^{2}}{6} x=\sum_{n=1}^{\infty} \frac{\sin n x}{n^{3}}=f_{3}(x)
$$

Cũng như vậy, bằng cách lấy tích phân từng số hạng chuổi hàm trên, ta được

$$
\frac{x^{4}}{48}-\pi \frac{x^{3}}{12}+\pi^{2} \frac{x^{2}}{12}=-\sum_{n=1}^{\infty} \frac{\cos n x}{n^{4}}+\sum_{n=1}^{\infty} \frac{1}{n^{4}}
$$

Nhưng $\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{90}$, ta dược

$$
f_{4}(x)=\sum_{n=1}^{\infty} \frac{\cos n x}{n^{4}}=-\frac{x^{4}}{48}+\pi \frac{x^{3}}{12}-\pi^{2} \frac{x^{2}}{12}+\frac{\pi^{4}}{90}
$$

MỤC LỤC

Trang
Lò̀ nói đẩu
Chuơng 1. SỐ THỤ゙C
A. Dể bài 5
B. Lời giải 9
Chương 2. HÀM SỐ MỘT BIẾN SỐ THỰC
A. Đề bài 19
B. Lời giải 22
Chrơng 3. GIỚI HẠN VÀ SỰLIÊN TỤC CỦA HÀM SỐ MỘT BIẾN SỐ
A. Đề bài 35
B. Lời giài 38
Chương 4. ĐẠO HÀM VÀ VI PHÂN CỦA HÀM SỐ MỘT BIẾN SỐ
A. Để bài 54
B. Lài giải 58
Chuơng 5. CÁC ĐỊNH Lí VÊ GIÁ TRỊ TRUNG BÌNH
A. Đề bài 81
B. Lờ giải 84
Chươg 6. NGU̇YÊN HÀM VÀ TÍCH PHÂN BẤT DỊNH
A. Để bài 109
B. Lời giài 111
Churong 7. TíCH PHÂN XÁC ĐINT
A. Để bài 132
B. Lời giải 137
Chuơng 8. CHUỖI
A. Đế bài 168
B. Lờ giài 176
Một sớ bài tập hỗn hợp 241
Lời giài 247
27.0.0.1 downloaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

Chịu trách nhiệm xuất bản: Chủ tịch HĐQT kiêm Tổng Giánn đốc NGÔ TRẦN ÁI Phó Tổng Giám đốc kièm Tổng biên tập NGUYỄN QUÝ THAO

> Bién tập lán đáu:
> NGUYỄ TRỌNG BÁ
> Biên tạp tái bản :
> NGUYỄN XUÂN BINH
> Bièn tập kithuật :
> NGUYỄN LIÊN HUOONG
> Sira ban in:
> LÊ HỒNG VÂN
> Chébán :
> PHÒNG CHẾ BẢN (NXB GIÁO DỤC)

BÀI TẬP TOÁN CAO CẤP - Tập hai Mâ só: 7K281T7 - DAI

In 5.000 bản, khổ $14,3 \times 20,3 \mathrm{~cm}$, tại Xí nghiệp in Hà Tây. Só in: 705/DAI; Só xuát bản: 11-2007/CXB/219-2119/GD. In xong và nộp lưu chiểu tháng 1 năm 2007.
27.0.0.1 dowzploaded 60384.pdf at Tue Jul 31 08:30:34 ICT 2012

Tìm Dọ̣ SÁCH THAM KHẢO DẠI HỌC bọ̀ Món toán cùa nha xuăt dàn giáo dục

1- Giai tich ham
2- Bai tâp giai tich hàm
3-Tôpô đạı cưong- Đọ đo
và tich phân
4- Giai tich tập 1, 2
5- Đai só dai cuong
6- Só dai só
7- Hinh học vi phân
8- Giài tich só
9- Phưong trinh dạo ham riéng
10-Co sở phương trinh vi phân và li thuyét ón định
11-Mở đău lí thuyč́ xác xuát va ứng dung
12- Bài 1ạp xác suál
13- Lí thuyět xàc suất
14- Xác suát thống ké
15- Phuong pháp tinh vá cac thuât toan
16- Toxin học cao cắp - Tàp I. 2, 3
17- Bài tạ̀p toán học cao cấp - Táp I, 2.3
18- Tù điēn toán hoc thòng dung

Nguvền Xuân Liêm
Nguvền Xuân Liêm
Nguyền Xuân Liêm
Nguyền Xuân Liêm
Nguyền Hitu Việt Hong
Hoàng Xuân Sinh
Doàn Quinh
Nguyền Minh Chuongi C ()
Nguyền Minh Churong
Nguyền Thế Hoàn - Pham Phu

†ăng Hing Thắng

făng Hing Thơng
Nguyền Duy Tiến - Vù Viết Yên
Nguyền Vän Hô
Phan vän Hap - Lê Đinh 7hịh
Nguvền Đinh Tri (CB)
Nguvền Đinh Tri (CB)
Ngô Thuc Lanh (CB)

Tai Ha Nụ̈ : 25 Hàn Thuyen, 81 Trán Hung t)ao, $187 B$ Giảng Vó, 23 Tràng Tiên Tui Dà Nöng : 15 Nguyền ChíThanh
Tụ Thành phờHö Chi Minh : 104 Mai Thi Luta, Quận I

